Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage
Background. The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease. Methods. We sought to identify such genetic varia...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2021-07, Vol.131 (13), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 13 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 131 |
creator | Page, Grier P Kanias, Tamir Guo, Yuelong J Lanteri, Marion C Zhang, Xu Mast, Alan E Cable, Ritchard G Spencer, Bryan R Kiss, Joseph E Fang, Fang Endres-Dighe, Stacy M Brambilla, Donald Nouraie, Mehdi Gordeuk, Victor R Kleinman, Steve Busch, Michael P Gladwin, Mark T |
description | Background. The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease. Methods. We sought to identify such genetic variants in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer donors, including 1,406 African Americans, 1,306 Asians, and 945 Hispanics, whose stored erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-storage hemolysis. Results. GWAS revealed 27 significant loci (P < 5 * [10.sup.-8]), many in candidate genes known to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/band 3. GWAS of oxidative hemolysis identified variants in genes encoding antioxidant enzymes, including GLRX, GPX4, G6PD, and SEC14L4 (Golgi-transport protein). Genome-wide significant loci were also tested for association with the severity of steady-state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1, and SEC14L4. Conclusions. Many of the identified variants, such as those in G6PD, have previously been shown to impair erythrocyte recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell disease and malaria. |
doi_str_mv | 10.1172/JCI146077 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8245173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667878562</galeid><sourcerecordid>A667878562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-a6bea95e90d4def92ad1586ee1728d8cdb8acea060ea9aa9496ab007de0631c53</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw4B9YQkJwSLGT2HEuSNWKj0VFlfi6WrP2JOvKiUucsOyNn86sqJYu2gPywaOZZ17PeCbLngp-LkRdvPqwWIpK8bq-l50KKXWui1Lfv2OfZI9SuuZcVJWsHmYnZUWmLpvT7NfHOUz-JmAOg8U0jVvW4RB7zDfeIYOUovUw-TiwNM1uy8g7TL71mFhRs0DRPYSObfy0Zj1CmkcCYsvW2MewTT6xNoYQN37o2CrE6EgujtDh4-xBCyHhk9v7LPv69s2Xxfv88urdcnFxmVupqykHtUJoJDbcVQ7bpgAnpFaI1L922rqVBovAFScMoKkaBSvOa4dclcLK8ix7_Uf3Zl716Cx1MUIwN6PvYdyaCN4cRga_Nl38YXRRSVGXJPDiVmCM32f6KtP7ZDEEGDDOyRSyFEXRUAWEPvsHvY7zOFB7REmltVJV_ZfqIKDxQxvpXbsTNRdK1brWUhVE5UcomhFSkXHA1pP7gD8_wtNx2Ht7NOHlQQIxE_6cOphTMsvPn_6fvfp2yD6_w64RwrROMcy7XUpHRe0YUxqx3Q9FcLPbb7Pf7_I3Ws_rQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556886647</pqid></control><display><type>article</type><title>Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Page, Grier P ; Kanias, Tamir ; Guo, Yuelong J ; Lanteri, Marion C ; Zhang, Xu ; Mast, Alan E ; Cable, Ritchard G ; Spencer, Bryan R ; Kiss, Joseph E ; Fang, Fang ; Endres-Dighe, Stacy M ; Brambilla, Donald ; Nouraie, Mehdi ; Gordeuk, Victor R ; Kleinman, Steve ; Busch, Michael P ; Gladwin, Mark T</creator><creatorcontrib>Page, Grier P ; Kanias, Tamir ; Guo, Yuelong J ; Lanteri, Marion C ; Zhang, Xu ; Mast, Alan E ; Cable, Ritchard G ; Spencer, Bryan R ; Kiss, Joseph E ; Fang, Fang ; Endres-Dighe, Stacy M ; Brambilla, Donald ; Nouraie, Mehdi ; Gordeuk, Victor R ; Kleinman, Steve ; Busch, Michael P ; Gladwin, Mark T</creatorcontrib><description>Background. The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease. Methods. We sought to identify such genetic variants in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer donors, including 1,406 African Americans, 1,306 Asians, and 945 Hispanics, whose stored erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-storage hemolysis. Results. GWAS revealed 27 significant loci (P < 5 * [10.sup.-8]), many in candidate genes known to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/band 3. GWAS of oxidative hemolysis identified variants in genes encoding antioxidant enzymes, including GLRX, GPX4, G6PD, and SEC14L4 (Golgi-transport protein). Genome-wide significant loci were also tested for association with the severity of steady-state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1, and SEC14L4. Conclusions. Many of the identified variants, such as those in G6PD, have previously been shown to impair erythrocyte recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell disease and malaria.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI146077</identifier><identifier>PMID: 34014839</identifier><language>eng</language><publisher>Ann Arbor: American Society for Clinical Investigation</publisher><subject>African Americans ; Aldehyde dehydrogenase ; Anemia ; Antioxidants ; Aquaporin 1 ; Asian people ; Biomedical research ; Blood & organ donations ; Blood diseases ; Blood donors ; Clinical Medicine ; Clinical outcomes ; Cold ; Enzymes ; Erythrocytes ; Genetic aspects ; Genetic diversity ; Genetic research ; Genetic variation ; Genome-wide association studies ; Genomes ; Glucosephosphate dehydrogenase ; Golgi apparatus ; Hemoglobin ; Hemolysis ; Hemolysis and hemolysins ; Hemolytic anemia ; Hispanic people ; Hypotheses ; Ion channels ; Malaria ; Metabolism ; Protein transport ; Proteins ; Risk factors ; Sickle cell anemia ; Sickle cell disease ; Single-nucleotide polymorphism ; Structure-function relationships</subject><ispartof>The Journal of clinical investigation, 2021-07, Vol.131 (13), p.1-13</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jul 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-a6bea95e90d4def92ad1586ee1728d8cdb8acea060ea9aa9496ab007de0631c53</citedby><cites>FETCH-LOGICAL-c584t-a6bea95e90d4def92ad1586ee1728d8cdb8acea060ea9aa9496ab007de0631c53</cites><orcidid>0000-0003-4725-7295 ; 0000-0001-9829-2934 ; 0000-0003-3740-0318 ; 0000-0002-7732-1385 ; 0000-0002-7276-4689 ; 0000-0002-1638-2969 ; 0000-0001-6558-0913 ; 0000-0002-1446-125X ; 0000-0002-9008-9154 ; 0000-0003-2582-3786 ; 0000-0001-7465-0581 ; 0000-0001-7267-9006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245173/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245173/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Page, Grier P</creatorcontrib><creatorcontrib>Kanias, Tamir</creatorcontrib><creatorcontrib>Guo, Yuelong J</creatorcontrib><creatorcontrib>Lanteri, Marion C</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Mast, Alan E</creatorcontrib><creatorcontrib>Cable, Ritchard G</creatorcontrib><creatorcontrib>Spencer, Bryan R</creatorcontrib><creatorcontrib>Kiss, Joseph E</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Endres-Dighe, Stacy M</creatorcontrib><creatorcontrib>Brambilla, Donald</creatorcontrib><creatorcontrib>Nouraie, Mehdi</creatorcontrib><creatorcontrib>Gordeuk, Victor R</creatorcontrib><creatorcontrib>Kleinman, Steve</creatorcontrib><creatorcontrib>Busch, Michael P</creatorcontrib><creatorcontrib>Gladwin, Mark T</creatorcontrib><title>Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage</title><title>The Journal of clinical investigation</title><description>Background. The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease. Methods. We sought to identify such genetic variants in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer donors, including 1,406 African Americans, 1,306 Asians, and 945 Hispanics, whose stored erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-storage hemolysis. Results. GWAS revealed 27 significant loci (P < 5 * [10.sup.-8]), many in candidate genes known to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/band 3. GWAS of oxidative hemolysis identified variants in genes encoding antioxidant enzymes, including GLRX, GPX4, G6PD, and SEC14L4 (Golgi-transport protein). Genome-wide significant loci were also tested for association with the severity of steady-state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1, and SEC14L4. Conclusions. Many of the identified variants, such as those in G6PD, have previously been shown to impair erythrocyte recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell disease and malaria.</description><subject>African Americans</subject><subject>Aldehyde dehydrogenase</subject><subject>Anemia</subject><subject>Antioxidants</subject><subject>Aquaporin 1</subject><subject>Asian people</subject><subject>Biomedical research</subject><subject>Blood & organ donations</subject><subject>Blood diseases</subject><subject>Blood donors</subject><subject>Clinical Medicine</subject><subject>Clinical outcomes</subject><subject>Cold</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Glucosephosphate dehydrogenase</subject><subject>Golgi apparatus</subject><subject>Hemoglobin</subject><subject>Hemolysis</subject><subject>Hemolysis and hemolysins</subject><subject>Hemolytic anemia</subject><subject>Hispanic people</subject><subject>Hypotheses</subject><subject>Ion channels</subject><subject>Malaria</subject><subject>Metabolism</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>Sickle cell anemia</subject><subject>Sickle cell disease</subject><subject>Single-nucleotide polymorphism</subject><subject>Structure-function relationships</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw4B9YQkJwSLGT2HEuSNWKj0VFlfi6WrP2JOvKiUucsOyNn86sqJYu2gPywaOZZ17PeCbLngp-LkRdvPqwWIpK8bq-l50KKXWui1Lfv2OfZI9SuuZcVJWsHmYnZUWmLpvT7NfHOUz-JmAOg8U0jVvW4RB7zDfeIYOUovUw-TiwNM1uy8g7TL71mFhRs0DRPYSObfy0Zj1CmkcCYsvW2MewTT6xNoYQN37o2CrE6EgujtDh4-xBCyHhk9v7LPv69s2Xxfv88urdcnFxmVupqykHtUJoJDbcVQ7bpgAnpFaI1L922rqVBovAFScMoKkaBSvOa4dclcLK8ix7_Uf3Zl716Cx1MUIwN6PvYdyaCN4cRga_Nl38YXRRSVGXJPDiVmCM32f6KtP7ZDEEGDDOyRSyFEXRUAWEPvsHvY7zOFB7REmltVJV_ZfqIKDxQxvpXbsTNRdK1brWUhVE5UcomhFSkXHA1pP7gD8_wtNx2Ht7NOHlQQIxE_6cOphTMsvPn_6fvfp2yD6_w64RwrROMcy7XUpHRe0YUxqx3Q9FcLPbb7Pf7_I3Ws_rQQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Page, Grier P</creator><creator>Kanias, Tamir</creator><creator>Guo, Yuelong J</creator><creator>Lanteri, Marion C</creator><creator>Zhang, Xu</creator><creator>Mast, Alan E</creator><creator>Cable, Ritchard G</creator><creator>Spencer, Bryan R</creator><creator>Kiss, Joseph E</creator><creator>Fang, Fang</creator><creator>Endres-Dighe, Stacy M</creator><creator>Brambilla, Donald</creator><creator>Nouraie, Mehdi</creator><creator>Gordeuk, Victor R</creator><creator>Kleinman, Steve</creator><creator>Busch, Michael P</creator><creator>Gladwin, Mark T</creator><general>American Society for Clinical Investigation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4725-7295</orcidid><orcidid>https://orcid.org/0000-0001-9829-2934</orcidid><orcidid>https://orcid.org/0000-0003-3740-0318</orcidid><orcidid>https://orcid.org/0000-0002-7732-1385</orcidid><orcidid>https://orcid.org/0000-0002-7276-4689</orcidid><orcidid>https://orcid.org/0000-0002-1638-2969</orcidid><orcidid>https://orcid.org/0000-0001-6558-0913</orcidid><orcidid>https://orcid.org/0000-0002-1446-125X</orcidid><orcidid>https://orcid.org/0000-0002-9008-9154</orcidid><orcidid>https://orcid.org/0000-0003-2582-3786</orcidid><orcidid>https://orcid.org/0000-0001-7465-0581</orcidid><orcidid>https://orcid.org/0000-0001-7267-9006</orcidid></search><sort><creationdate>20210701</creationdate><title>Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage</title><author>Page, Grier P ; Kanias, Tamir ; Guo, Yuelong J ; Lanteri, Marion C ; Zhang, Xu ; Mast, Alan E ; Cable, Ritchard G ; Spencer, Bryan R ; Kiss, Joseph E ; Fang, Fang ; Endres-Dighe, Stacy M ; Brambilla, Donald ; Nouraie, Mehdi ; Gordeuk, Victor R ; Kleinman, Steve ; Busch, Michael P ; Gladwin, Mark T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-a6bea95e90d4def92ad1586ee1728d8cdb8acea060ea9aa9496ab007de0631c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>African Americans</topic><topic>Aldehyde dehydrogenase</topic><topic>Anemia</topic><topic>Antioxidants</topic><topic>Aquaporin 1</topic><topic>Asian people</topic><topic>Biomedical research</topic><topic>Blood & organ donations</topic><topic>Blood diseases</topic><topic>Blood donors</topic><topic>Clinical Medicine</topic><topic>Clinical outcomes</topic><topic>Cold</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Glucosephosphate dehydrogenase</topic><topic>Golgi apparatus</topic><topic>Hemoglobin</topic><topic>Hemolysis</topic><topic>Hemolysis and hemolysins</topic><topic>Hemolytic anemia</topic><topic>Hispanic people</topic><topic>Hypotheses</topic><topic>Ion channels</topic><topic>Malaria</topic><topic>Metabolism</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>Sickle cell anemia</topic><topic>Sickle cell disease</topic><topic>Single-nucleotide polymorphism</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Grier P</creatorcontrib><creatorcontrib>Kanias, Tamir</creatorcontrib><creatorcontrib>Guo, Yuelong J</creatorcontrib><creatorcontrib>Lanteri, Marion C</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Mast, Alan E</creatorcontrib><creatorcontrib>Cable, Ritchard G</creatorcontrib><creatorcontrib>Spencer, Bryan R</creatorcontrib><creatorcontrib>Kiss, Joseph E</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Endres-Dighe, Stacy M</creatorcontrib><creatorcontrib>Brambilla, Donald</creatorcontrib><creatorcontrib>Nouraie, Mehdi</creatorcontrib><creatorcontrib>Gordeuk, Victor R</creatorcontrib><creatorcontrib>Kleinman, Steve</creatorcontrib><creatorcontrib>Busch, Michael P</creatorcontrib><creatorcontrib>Gladwin, Mark T</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Grier P</au><au>Kanias, Tamir</au><au>Guo, Yuelong J</au><au>Lanteri, Marion C</au><au>Zhang, Xu</au><au>Mast, Alan E</au><au>Cable, Ritchard G</au><au>Spencer, Bryan R</au><au>Kiss, Joseph E</au><au>Fang, Fang</au><au>Endres-Dighe, Stacy M</au><au>Brambilla, Donald</au><au>Nouraie, Mehdi</au><au>Gordeuk, Victor R</au><au>Kleinman, Steve</au><au>Busch, Michael P</au><au>Gladwin, Mark T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage</atitle><jtitle>The Journal of clinical investigation</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>131</volume><issue>13</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Background. The evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease. Methods. We sought to identify such genetic variants in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer donors, including 1,406 African Americans, 1,306 Asians, and 945 Hispanics, whose stored erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-storage hemolysis. Results. GWAS revealed 27 significant loci (P < 5 * [10.sup.-8]), many in candidate genes known to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/band 3. GWAS of oxidative hemolysis identified variants in genes encoding antioxidant enzymes, including GLRX, GPX4, G6PD, and SEC14L4 (Golgi-transport protein). Genome-wide significant loci were also tested for association with the severity of steady-state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1, and SEC14L4. Conclusions. Many of the identified variants, such as those in G6PD, have previously been shown to impair erythrocyte recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell disease and malaria.</abstract><cop>Ann Arbor</cop><pub>American Society for Clinical Investigation</pub><pmid>34014839</pmid><doi>10.1172/JCI146077</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4725-7295</orcidid><orcidid>https://orcid.org/0000-0001-9829-2934</orcidid><orcidid>https://orcid.org/0000-0003-3740-0318</orcidid><orcidid>https://orcid.org/0000-0002-7732-1385</orcidid><orcidid>https://orcid.org/0000-0002-7276-4689</orcidid><orcidid>https://orcid.org/0000-0002-1638-2969</orcidid><orcidid>https://orcid.org/0000-0001-6558-0913</orcidid><orcidid>https://orcid.org/0000-0002-1446-125X</orcidid><orcidid>https://orcid.org/0000-0002-9008-9154</orcidid><orcidid>https://orcid.org/0000-0003-2582-3786</orcidid><orcidid>https://orcid.org/0000-0001-7465-0581</orcidid><orcidid>https://orcid.org/0000-0001-7267-9006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2021-07, Vol.131 (13), p.1-13 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8245173 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | African Americans Aldehyde dehydrogenase Anemia Antioxidants Aquaporin 1 Asian people Biomedical research Blood & organ donations Blood diseases Blood donors Clinical Medicine Clinical outcomes Cold Enzymes Erythrocytes Genetic aspects Genetic diversity Genetic research Genetic variation Genome-wide association studies Genomes Glucosephosphate dehydrogenase Golgi apparatus Hemoglobin Hemolysis Hemolysis and hemolysins Hemolytic anemia Hispanic people Hypotheses Ion channels Malaria Metabolism Protein transport Proteins Risk factors Sickle cell anemia Sickle cell disease Single-nucleotide polymorphism Structure-function relationships |
title | Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-ancestry%20genome-wide%20association%20study%20identifies%2027%20loci%20associated%20with%20measures%20of%20hemolysis%20following%20blood%20storage&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Page,%20Grier%20P&rft.date=2021-07-01&rft.volume=131&rft.issue=13&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI146077&rft_dat=%3Cgale_pubme%3EA667878562%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556886647&rft_id=info:pmid/34014839&rft_galeid=A667878562&rfr_iscdi=true |