Modeling Primary Bone Tumors and Bone Metastasis with Solid Tumor Graft Implantation into Bone

Primary bone tumors or bone metastasis from solid tumors result in painful osteolytic, osteoblastic, or mixed osteolytic/osteoblastic lesions. These lesions compromise bone structure, increase the risk of pathologic fracture, and leave patients with limited treatment options. Primary bone tumors met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualized experiments 2020-09 (163)
Hauptverfasser: Hildreth, 3rd, Blake E, Palmer, Charlotte, Allen, Matthew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Primary bone tumors or bone metastasis from solid tumors result in painful osteolytic, osteoblastic, or mixed osteolytic/osteoblastic lesions. These lesions compromise bone structure, increase the risk of pathologic fracture, and leave patients with limited treatment options. Primary bone tumors metastasize to distant organs, with some types capable of spreading to other skeletal sites. However, recent evidence suggests that with many solid tumors, cancer cells that have spread to bone may be the primary source of cells that ultimately metastasize to other organ systems. Most syngeneic or xenograft mouse models of primary bone tumors involve intra-osseous (orthotopic) injection of tumor cell suspensions. Some animal models of skeletal metastasis from solid tumors also depend on direct bone injection, while others attempt to recapitulate additional steps of the bone metastatic cascade by injecting cells intravascularly or into the organ of the primary tumor. However, none of these models develop bone metastasis reliably or with an incidence of 100%. In addition, direct intra-osseous injection of tumor cells has been shown to be associated with potential tumor embolization of the lung. These embolic tumor cells engraft but do not recapitulate the metastatic cascade. We reported a mouse model of osteosarcoma in which fresh or cryopreserved tumor fragments (consisting of tumor cells plus stroma) are implanted directly into the proximal tibia using a minimally invasive surgical technique. These animals developed reproducible engraftment, growth, and, over time, osteolysis and lung metastasis. This technique has the versatility to be used to model solid tumor bone metastasis and can readily employ grafts consisting of one or multiple cell types, genetically-modified cells, patient-derived xenografts, and/or labeled cells that can be tracked by optical or advanced imaging. Here, we demonstrate this technique, modeling primary bone tumors and bone metastasis using solid tumor graft implantation into bone.
ISSN:1940-087X
1940-087X
DOI:10.3791/61313