Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition

The materials chemistry underlying lithium–sulfur (Li–S) batteries is uniquely dependent on the behavior of soluble lithium polysulfide intermediates, which form during operation and mediate the charge transfer process in solution. The manner by which lithium polysulfides are solvated by the surroun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-05, Vol.33 (9), p.3457-3466
Hauptverfasser: Gupta, Abhay, Bhargav, Amruth, Manthiram, Arumugam
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3466
container_issue 9
container_start_page 3457
container_title Chemistry of materials
container_volume 33
creator Gupta, Abhay
Bhargav, Amruth
Manthiram, Arumugam
description The materials chemistry underlying lithium–sulfur (Li–S) batteries is uniquely dependent on the behavior of soluble lithium polysulfide intermediates, which form during operation and mediate the charge transfer process in solution. The manner by which lithium polysulfides are solvated by the surrounding solvent and salt compounds is a critical factor with regard to electrochemical utilization and reversibility of the sulfur active material. Particularly under low-temperature and lean electrolyte conditions, lithium polysulfides tend to coordinate with other polysulfide units in solution, forming large, aggregated clusters that stymie the electrochemical conversion process. However, the tendency to cluster is known to be influenced by the presence of strongly binding anionic species in solution, which presents electrostatic competing interactions with Li+. The heightened electrostatic competition in turn can dissuade the formation of clustered Li+–S x 2– bond networks. Here, we extend that understanding to the influence of distinct cationic species in solution, which can present analogous competing interactions with S x 2– dianions to stymie polysulfide cluster formation. We find that introducing NH4 + cations into solution through an ammonium trifluoroacetate additive positively tailors the polysulfide coordination shell. This improves the electrochemical conversion kinetics under challenging lean electrolyte and subzero low-temperature conditions and provides a more holistic understanding of polysulfide coordination behavior.
doi_str_mv 10.1021/acs.chemmater.1c00893
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8243407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548403777</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-a6f61588923612e1a584a910ca5434393a5decce19e2206927c006cc067e02153</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhi3Uqiy0P4Eqx16y-CPOxwUJIr6kldoDPVuDM7sxcuLFdpD49zjsdgWnnizNPO87nnkJOWN0yShn56DDUvc4DBDRL5mmtG7EEVkwyWkuKeVfyCKVqryoZHlMTkJ4opQlaf2NHIuCM8alXJDhAYx13oybbGVib6Yh--Psa5js2nSYtc75zowQjRszGLustVNIA2f-Cnt4Mc5nsfdu2vRZ-44ZnV1b1NG7EFNBJ49hi9HMve_k6xpswB_795T8vbl-aO_y1e_b-_ZylUMhRcyhXJdM1nXDRck4MpB1AQ2jGmQhCtEIkB1qjaxBzmnZ8CqtX2pNywrTbaQ4JRc73-30OGCncYwerNp6M4B_VQ6M-twZTa827kXVPA2gVTL4tTfw7nnCENVggkZrYUQ3BcVlURdUVNWMyh2q08bB4_owhlE1R6VSVOoQldpHlXQ_P_7xoPqXTQLYDpj1T27yYzrZf0zfAHvqpxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548403777</pqid></control><display><type>article</type><title>Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition</title><source>ACS Publications</source><creator>Gupta, Abhay ; Bhargav, Amruth ; Manthiram, Arumugam</creator><creatorcontrib>Gupta, Abhay ; Bhargav, Amruth ; Manthiram, Arumugam</creatorcontrib><description>The materials chemistry underlying lithium–sulfur (Li–S) batteries is uniquely dependent on the behavior of soluble lithium polysulfide intermediates, which form during operation and mediate the charge transfer process in solution. The manner by which lithium polysulfides are solvated by the surrounding solvent and salt compounds is a critical factor with regard to electrochemical utilization and reversibility of the sulfur active material. Particularly under low-temperature and lean electrolyte conditions, lithium polysulfides tend to coordinate with other polysulfide units in solution, forming large, aggregated clusters that stymie the electrochemical conversion process. However, the tendency to cluster is known to be influenced by the presence of strongly binding anionic species in solution, which presents electrostatic competing interactions with Li+. The heightened electrostatic competition in turn can dissuade the formation of clustered Li+–S x 2– bond networks. Here, we extend that understanding to the influence of distinct cationic species in solution, which can present analogous competing interactions with S x 2– dianions to stymie polysulfide cluster formation. We find that introducing NH4 + cations into solution through an ammonium trifluoroacetate additive positively tailors the polysulfide coordination shell. This improves the electrochemical conversion kinetics under challenging lean electrolyte and subzero low-temperature conditions and provides a more holistic understanding of polysulfide coordination behavior.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c00893</identifier><identifier>PMID: 34211255</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-05, Vol.33 (9), p.3457-3466</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-a6f61588923612e1a584a910ca5434393a5decce19e2206927c006cc067e02153</citedby><cites>FETCH-LOGICAL-a453t-a6f61588923612e1a584a910ca5434393a5decce19e2206927c006cc067e02153</cites><orcidid>0000-0003-0237-9563 ; 0000-0002-1793-8340 ; 0000-0003-4767-4865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c00893$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c00893$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34211255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Abhay</creatorcontrib><creatorcontrib>Bhargav, Amruth</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><title>Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The materials chemistry underlying lithium–sulfur (Li–S) batteries is uniquely dependent on the behavior of soluble lithium polysulfide intermediates, which form during operation and mediate the charge transfer process in solution. The manner by which lithium polysulfides are solvated by the surrounding solvent and salt compounds is a critical factor with regard to electrochemical utilization and reversibility of the sulfur active material. Particularly under low-temperature and lean electrolyte conditions, lithium polysulfides tend to coordinate with other polysulfide units in solution, forming large, aggregated clusters that stymie the electrochemical conversion process. However, the tendency to cluster is known to be influenced by the presence of strongly binding anionic species in solution, which presents electrostatic competing interactions with Li+. The heightened electrostatic competition in turn can dissuade the formation of clustered Li+–S x 2– bond networks. Here, we extend that understanding to the influence of distinct cationic species in solution, which can present analogous competing interactions with S x 2– dianions to stymie polysulfide cluster formation. We find that introducing NH4 + cations into solution through an ammonium trifluoroacetate additive positively tailors the polysulfide coordination shell. This improves the electrochemical conversion kinetics under challenging lean electrolyte and subzero low-temperature conditions and provides a more holistic understanding of polysulfide coordination behavior.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhi3Uqiy0P4Eqx16y-CPOxwUJIr6kldoDPVuDM7sxcuLFdpD49zjsdgWnnizNPO87nnkJOWN0yShn56DDUvc4DBDRL5mmtG7EEVkwyWkuKeVfyCKVqryoZHlMTkJ4opQlaf2NHIuCM8alXJDhAYx13oybbGVib6Yh--Psa5js2nSYtc75zowQjRszGLustVNIA2f-Cnt4Mc5nsfdu2vRZ-44ZnV1b1NG7EFNBJ49hi9HMve_k6xpswB_795T8vbl-aO_y1e_b-_ZylUMhRcyhXJdM1nXDRck4MpB1AQ2jGmQhCtEIkB1qjaxBzmnZ8CqtX2pNywrTbaQ4JRc73-30OGCncYwerNp6M4B_VQ6M-twZTa827kXVPA2gVTL4tTfw7nnCENVggkZrYUQ3BcVlURdUVNWMyh2q08bB4_owhlE1R6VSVOoQldpHlXQ_P_7xoPqXTQLYDpj1T27yYzrZf0zfAHvqpxM</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Gupta, Abhay</creator><creator>Bhargav, Amruth</creator><creator>Manthiram, Arumugam</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid><orcidid>https://orcid.org/0000-0002-1793-8340</orcidid><orcidid>https://orcid.org/0000-0003-4767-4865</orcidid></search><sort><creationdate>20210511</creationdate><title>Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition</title><author>Gupta, Abhay ; Bhargav, Amruth ; Manthiram, Arumugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-a6f61588923612e1a584a910ca5434393a5decce19e2206927c006cc067e02153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Abhay</creatorcontrib><creatorcontrib>Bhargav, Amruth</creatorcontrib><creatorcontrib>Manthiram, Arumugam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Abhay</au><au>Bhargav, Amruth</au><au>Manthiram, Arumugam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-05-11</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><spage>3457</spage><epage>3466</epage><pages>3457-3466</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The materials chemistry underlying lithium–sulfur (Li–S) batteries is uniquely dependent on the behavior of soluble lithium polysulfide intermediates, which form during operation and mediate the charge transfer process in solution. The manner by which lithium polysulfides are solvated by the surrounding solvent and salt compounds is a critical factor with regard to electrochemical utilization and reversibility of the sulfur active material. Particularly under low-temperature and lean electrolyte conditions, lithium polysulfides tend to coordinate with other polysulfide units in solution, forming large, aggregated clusters that stymie the electrochemical conversion process. However, the tendency to cluster is known to be influenced by the presence of strongly binding anionic species in solution, which presents electrostatic competing interactions with Li+. The heightened electrostatic competition in turn can dissuade the formation of clustered Li+–S x 2– bond networks. Here, we extend that understanding to the influence of distinct cationic species in solution, which can present analogous competing interactions with S x 2– dianions to stymie polysulfide cluster formation. We find that introducing NH4 + cations into solution through an ammonium trifluoroacetate additive positively tailors the polysulfide coordination shell. This improves the electrochemical conversion kinetics under challenging lean electrolyte and subzero low-temperature conditions and provides a more holistic understanding of polysulfide coordination behavior.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34211255</pmid><doi>10.1021/acs.chemmater.1c00893</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid><orcidid>https://orcid.org/0000-0002-1793-8340</orcidid><orcidid>https://orcid.org/0000-0003-4767-4865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-05, Vol.33 (9), p.3457-3466
issn 0897-4756
1520-5002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8243407
source ACS Publications
title Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Lithium%20Polysulfide%20Coordination%20and%20Clustering%20Behavior%20through%20Cationic%20Electrostatic%20Competition&rft.jtitle=Chemistry%20of%20materials&rft.au=Gupta,%20Abhay&rft.date=2021-05-11&rft.volume=33&rft.issue=9&rft.spage=3457&rft.epage=3466&rft.pages=3457-3466&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c00893&rft_dat=%3Cproquest_pubme%3E2548403777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548403777&rft_id=info:pmid/34211255&rfr_iscdi=true