Pharmacological Predictors of Morbidity and Mortality in COVID‐19
The interaction of coronavirus disease (COVID‐19) with the majority of common prescriptions is broadly unknown. The purpose of this study is to identify medications associated with altered disease outcomes in COVID‐19. A retrospective cohort composed of all adult inpatient admissions to our center w...
Gespeichert in:
Veröffentlicht in: | Journal of clinical pharmacology 2021-10, Vol.61 (10), p.1286-1300 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1300 |
---|---|
container_issue | 10 |
container_start_page | 1286 |
container_title | Journal of clinical pharmacology |
container_volume | 61 |
creator | Oddy, Christopher McCaul, James Keeling, Polly Allington, Jonathan Senn, Dhanuja Soni, Neesha Morrison, Hannah Mawella, Ruwani Samuel, Thomas Dixon, John |
description | The interaction of coronavirus disease (COVID‐19) with the majority of common prescriptions is broadly unknown. The purpose of this study is to identify medications associated with altered disease outcomes in COVID‐19. A retrospective cohort composed of all adult inpatient admissions to our center with COVID‐19 was analyzed. Data concerning all antecedent prescriptions were collected and agents brought forward for analysis if prescribed to at least 20 patients in our cohort. Forty‐two medications and 22 classes of medication were examined. Groups were propensity score matched and analyzed by logistic and linear regression. The majority of medications did not show a statistically significant relationship with altered disease outcomes. Lower mortality was associated with use of pregabalin (hazard ratio [HR], 0.10; 95% confidence interval [CI], 0.01‐0.92; P = .049) and inhalers of any type (HR, 0.33; 95%CI, 0.14‐0.80; P = .015), specifically beclomethasone (HR, 0.10; 95%CI, 0.01‐0.82; P = .032), tiotropium (HR, 0.07; 95%CI, 0.01‐0.83; P = .035), and steroid‐containing inhalers (HR, 0.35; 95%CI, 0.15‐0.79; P = .013). Gliclazide (HR, 4.37; 95%CI, 1.26‐15.18; P = .020) and proton pump inhibitor (HR, 1.72; 95%CI, 1.06‐2.79; P = .028) use was associated with greater mortality. Diuretic (HR, 0.07; 95%CI, 0.01‐0.37; P = .002) and statin (HR, 0.35; 95%CI, 0.17‐0.73; P = .006) use was associated with lower rates of critical care admission. Our data lends confidence to observing usual practice in patients with COVID‐19 by continuing antecedent prescriptions in the absence of an alternative acute contraindication. We highlight potential benefits in investigation of diuretics, inhalers, pregabalin, and statins as therapeutic agents for COVID‐19 and support further assessment of the safety of gliclazide and proton pump inhibitors in the acute illness. |
doi_str_mv | 10.1002/jcph.1878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8242508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571084063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4718-d631a5b90e0fa25dbcab84ba26dad01c78a55758db90273fbd396da7a8f829993</originalsourceid><addsrcrecordid>eNp10cFu1DAQBmALtWqX0gMvgCL1Qg9px3Yc2xcklBbaqqh7AK6WYztdr7LxYmep9sYj8Iw8CQ5bKkDiZI3m06-xfoReYjjDAOR8adaLMyy4eIZmmDFSVjVUe2gGIHFJOMAhep7SEgDXFcMH6JBSCaKmfIaa-ULHlTahD_fe6L6YR2e9GUNMReiKDyG23vpxW-jBTtOo-2nyQ9Hcfb6--PHtO5Yv0H6n--SOH98j9Ond5cfmqry9e3_dvL0tTcWxKG1NsWatBAedJsy2RreiajWprbaADReaMc6EzYRw2rWWyrziWnSCSCnpEXqzy11v2pWzxg1j1L1aR7_ScauC9urvzeAX6j58VYJUhIHIAa8fA2L4snFpVCufjOt7PbiwSYowLCmGSuBMT_6hy7CJQ_5eVhyDqKCmWZ3ulIkhpei6p2MwqKkaNVWjpmqyffXn9U_ydxcZnO_Ag-_d9v9J6qaZX_2K_AkvSplN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571084063</pqid></control><display><type>article</type><title>Pharmacological Predictors of Morbidity and Mortality in COVID‐19</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oddy, Christopher ; McCaul, James ; Keeling, Polly ; Allington, Jonathan ; Senn, Dhanuja ; Soni, Neesha ; Morrison, Hannah ; Mawella, Ruwani ; Samuel, Thomas ; Dixon, John</creator><creatorcontrib>Oddy, Christopher ; McCaul, James ; Keeling, Polly ; Allington, Jonathan ; Senn, Dhanuja ; Soni, Neesha ; Morrison, Hannah ; Mawella, Ruwani ; Samuel, Thomas ; Dixon, John</creatorcontrib><description>The interaction of coronavirus disease (COVID‐19) with the majority of common prescriptions is broadly unknown. The purpose of this study is to identify medications associated with altered disease outcomes in COVID‐19. A retrospective cohort composed of all adult inpatient admissions to our center with COVID‐19 was analyzed. Data concerning all antecedent prescriptions were collected and agents brought forward for analysis if prescribed to at least 20 patients in our cohort. Forty‐two medications and 22 classes of medication were examined. Groups were propensity score matched and analyzed by logistic and linear regression. The majority of medications did not show a statistically significant relationship with altered disease outcomes. Lower mortality was associated with use of pregabalin (hazard ratio [HR], 0.10; 95% confidence interval [CI], 0.01‐0.92; P = .049) and inhalers of any type (HR, 0.33; 95%CI, 0.14‐0.80; P = .015), specifically beclomethasone (HR, 0.10; 95%CI, 0.01‐0.82; P = .032), tiotropium (HR, 0.07; 95%CI, 0.01‐0.83; P = .035), and steroid‐containing inhalers (HR, 0.35; 95%CI, 0.15‐0.79; P = .013). Gliclazide (HR, 4.37; 95%CI, 1.26‐15.18; P = .020) and proton pump inhibitor (HR, 1.72; 95%CI, 1.06‐2.79; P = .028) use was associated with greater mortality. Diuretic (HR, 0.07; 95%CI, 0.01‐0.37; P = .002) and statin (HR, 0.35; 95%CI, 0.17‐0.73; P = .006) use was associated with lower rates of critical care admission. Our data lends confidence to observing usual practice in patients with COVID‐19 by continuing antecedent prescriptions in the absence of an alternative acute contraindication. We highlight potential benefits in investigation of diuretics, inhalers, pregabalin, and statins as therapeutic agents for COVID‐19 and support further assessment of the safety of gliclazide and proton pump inhibitors in the acute illness.</description><identifier>ISSN: 0091-2700</identifier><identifier>ISSN: 1552-4604</identifier><identifier>EISSN: 1552-4604</identifier><identifier>DOI: 10.1002/jcph.1878</identifier><identifier>PMID: 33908637</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Aged ; Continuing Education: Therapeutics ; Coronaviruses ; COVID-19 ; COVID-19 - mortality ; COVID-19 - therapy ; COVID-19 Testing - methods ; Critical Care Outcomes ; Diuretics ; Female ; Hospitalization - statistics & numerical data ; Humans ; Inhalers ; Male ; medications ; Morbidity ; Mortality ; Prescription Drugs - classification ; Prescription Drugs - therapeutic use ; prescriptions ; Propensity Score ; propensity score matched ; Proton pump inhibitors ; Retrospective Studies ; Risk Assessment ; SARS-CoV-2 - drug effects ; SARS‐CoV‐2 ; severe acute respiratory syndrome coronavirus 2 ; Severity of Illness Index ; Statins ; Statistical analysis ; United Kingdom - epidemiology</subject><ispartof>Journal of clinical pharmacology, 2021-10, Vol.61 (10), p.1286-1300</ispartof><rights>2021, The American College of Clinical Pharmacology</rights><rights>2021, The American College of Clinical Pharmacology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4718-d631a5b90e0fa25dbcab84ba26dad01c78a55758db90273fbd396da7a8f829993</citedby><cites>FETCH-LOGICAL-c4718-d631a5b90e0fa25dbcab84ba26dad01c78a55758db90273fbd396da7a8f829993</cites><orcidid>0000-0002-2311-9261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcph.1878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcph.1878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33908637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oddy, Christopher</creatorcontrib><creatorcontrib>McCaul, James</creatorcontrib><creatorcontrib>Keeling, Polly</creatorcontrib><creatorcontrib>Allington, Jonathan</creatorcontrib><creatorcontrib>Senn, Dhanuja</creatorcontrib><creatorcontrib>Soni, Neesha</creatorcontrib><creatorcontrib>Morrison, Hannah</creatorcontrib><creatorcontrib>Mawella, Ruwani</creatorcontrib><creatorcontrib>Samuel, Thomas</creatorcontrib><creatorcontrib>Dixon, John</creatorcontrib><title>Pharmacological Predictors of Morbidity and Mortality in COVID‐19</title><title>Journal of clinical pharmacology</title><addtitle>J Clin Pharmacol</addtitle><description>The interaction of coronavirus disease (COVID‐19) with the majority of common prescriptions is broadly unknown. The purpose of this study is to identify medications associated with altered disease outcomes in COVID‐19. A retrospective cohort composed of all adult inpatient admissions to our center with COVID‐19 was analyzed. Data concerning all antecedent prescriptions were collected and agents brought forward for analysis if prescribed to at least 20 patients in our cohort. Forty‐two medications and 22 classes of medication were examined. Groups were propensity score matched and analyzed by logistic and linear regression. The majority of medications did not show a statistically significant relationship with altered disease outcomes. Lower mortality was associated with use of pregabalin (hazard ratio [HR], 0.10; 95% confidence interval [CI], 0.01‐0.92; P = .049) and inhalers of any type (HR, 0.33; 95%CI, 0.14‐0.80; P = .015), specifically beclomethasone (HR, 0.10; 95%CI, 0.01‐0.82; P = .032), tiotropium (HR, 0.07; 95%CI, 0.01‐0.83; P = .035), and steroid‐containing inhalers (HR, 0.35; 95%CI, 0.15‐0.79; P = .013). Gliclazide (HR, 4.37; 95%CI, 1.26‐15.18; P = .020) and proton pump inhibitor (HR, 1.72; 95%CI, 1.06‐2.79; P = .028) use was associated with greater mortality. Diuretic (HR, 0.07; 95%CI, 0.01‐0.37; P = .002) and statin (HR, 0.35; 95%CI, 0.17‐0.73; P = .006) use was associated with lower rates of critical care admission. Our data lends confidence to observing usual practice in patients with COVID‐19 by continuing antecedent prescriptions in the absence of an alternative acute contraindication. We highlight potential benefits in investigation of diuretics, inhalers, pregabalin, and statins as therapeutic agents for COVID‐19 and support further assessment of the safety of gliclazide and proton pump inhibitors in the acute illness.</description><subject>Aged</subject><subject>Continuing Education: Therapeutics</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - mortality</subject><subject>COVID-19 - therapy</subject><subject>COVID-19 Testing - methods</subject><subject>Critical Care Outcomes</subject><subject>Diuretics</subject><subject>Female</subject><subject>Hospitalization - statistics & numerical data</subject><subject>Humans</subject><subject>Inhalers</subject><subject>Male</subject><subject>medications</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Prescription Drugs - classification</subject><subject>Prescription Drugs - therapeutic use</subject><subject>prescriptions</subject><subject>Propensity Score</subject><subject>propensity score matched</subject><subject>Proton pump inhibitors</subject><subject>Retrospective Studies</subject><subject>Risk Assessment</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS‐CoV‐2</subject><subject>severe acute respiratory syndrome coronavirus 2</subject><subject>Severity of Illness Index</subject><subject>Statins</subject><subject>Statistical analysis</subject><subject>United Kingdom - epidemiology</subject><issn>0091-2700</issn><issn>1552-4604</issn><issn>1552-4604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10cFu1DAQBmALtWqX0gMvgCL1Qg9px3Yc2xcklBbaqqh7AK6WYztdr7LxYmep9sYj8Iw8CQ5bKkDiZI3m06-xfoReYjjDAOR8adaLMyy4eIZmmDFSVjVUe2gGIHFJOMAhep7SEgDXFcMH6JBSCaKmfIaa-ULHlTahD_fe6L6YR2e9GUNMReiKDyG23vpxW-jBTtOo-2nyQ9Hcfb6--PHtO5Yv0H6n--SOH98j9Ond5cfmqry9e3_dvL0tTcWxKG1NsWatBAedJsy2RreiajWprbaADReaMc6EzYRw2rWWyrziWnSCSCnpEXqzy11v2pWzxg1j1L1aR7_ScauC9urvzeAX6j58VYJUhIHIAa8fA2L4snFpVCufjOt7PbiwSYowLCmGSuBMT_6hy7CJQ_5eVhyDqKCmWZ3ulIkhpei6p2MwqKkaNVWjpmqyffXn9U_ydxcZnO_Ag-_d9v9J6qaZX_2K_AkvSplN</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Oddy, Christopher</creator><creator>McCaul, James</creator><creator>Keeling, Polly</creator><creator>Allington, Jonathan</creator><creator>Senn, Dhanuja</creator><creator>Soni, Neesha</creator><creator>Morrison, Hannah</creator><creator>Mawella, Ruwani</creator><creator>Samuel, Thomas</creator><creator>Dixon, John</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2311-9261</orcidid></search><sort><creationdate>202110</creationdate><title>Pharmacological Predictors of Morbidity and Mortality in COVID‐19</title><author>Oddy, Christopher ; McCaul, James ; Keeling, Polly ; Allington, Jonathan ; Senn, Dhanuja ; Soni, Neesha ; Morrison, Hannah ; Mawella, Ruwani ; Samuel, Thomas ; Dixon, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4718-d631a5b90e0fa25dbcab84ba26dad01c78a55758db90273fbd396da7a8f829993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Continuing Education: Therapeutics</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - mortality</topic><topic>COVID-19 - therapy</topic><topic>COVID-19 Testing - methods</topic><topic>Critical Care Outcomes</topic><topic>Diuretics</topic><topic>Female</topic><topic>Hospitalization - statistics & numerical data</topic><topic>Humans</topic><topic>Inhalers</topic><topic>Male</topic><topic>medications</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Prescription Drugs - classification</topic><topic>Prescription Drugs - therapeutic use</topic><topic>prescriptions</topic><topic>Propensity Score</topic><topic>propensity score matched</topic><topic>Proton pump inhibitors</topic><topic>Retrospective Studies</topic><topic>Risk Assessment</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS‐CoV‐2</topic><topic>severe acute respiratory syndrome coronavirus 2</topic><topic>Severity of Illness Index</topic><topic>Statins</topic><topic>Statistical analysis</topic><topic>United Kingdom - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oddy, Christopher</creatorcontrib><creatorcontrib>McCaul, James</creatorcontrib><creatorcontrib>Keeling, Polly</creatorcontrib><creatorcontrib>Allington, Jonathan</creatorcontrib><creatorcontrib>Senn, Dhanuja</creatorcontrib><creatorcontrib>Soni, Neesha</creatorcontrib><creatorcontrib>Morrison, Hannah</creatorcontrib><creatorcontrib>Mawella, Ruwani</creatorcontrib><creatorcontrib>Samuel, Thomas</creatorcontrib><creatorcontrib>Dixon, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oddy, Christopher</au><au>McCaul, James</au><au>Keeling, Polly</au><au>Allington, Jonathan</au><au>Senn, Dhanuja</au><au>Soni, Neesha</au><au>Morrison, Hannah</au><au>Mawella, Ruwani</au><au>Samuel, Thomas</au><au>Dixon, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacological Predictors of Morbidity and Mortality in COVID‐19</atitle><jtitle>Journal of clinical pharmacology</jtitle><addtitle>J Clin Pharmacol</addtitle><date>2021-10</date><risdate>2021</risdate><volume>61</volume><issue>10</issue><spage>1286</spage><epage>1300</epage><pages>1286-1300</pages><issn>0091-2700</issn><issn>1552-4604</issn><eissn>1552-4604</eissn><abstract>The interaction of coronavirus disease (COVID‐19) with the majority of common prescriptions is broadly unknown. The purpose of this study is to identify medications associated with altered disease outcomes in COVID‐19. A retrospective cohort composed of all adult inpatient admissions to our center with COVID‐19 was analyzed. Data concerning all antecedent prescriptions were collected and agents brought forward for analysis if prescribed to at least 20 patients in our cohort. Forty‐two medications and 22 classes of medication were examined. Groups were propensity score matched and analyzed by logistic and linear regression. The majority of medications did not show a statistically significant relationship with altered disease outcomes. Lower mortality was associated with use of pregabalin (hazard ratio [HR], 0.10; 95% confidence interval [CI], 0.01‐0.92; P = .049) and inhalers of any type (HR, 0.33; 95%CI, 0.14‐0.80; P = .015), specifically beclomethasone (HR, 0.10; 95%CI, 0.01‐0.82; P = .032), tiotropium (HR, 0.07; 95%CI, 0.01‐0.83; P = .035), and steroid‐containing inhalers (HR, 0.35; 95%CI, 0.15‐0.79; P = .013). Gliclazide (HR, 4.37; 95%CI, 1.26‐15.18; P = .020) and proton pump inhibitor (HR, 1.72; 95%CI, 1.06‐2.79; P = .028) use was associated with greater mortality. Diuretic (HR, 0.07; 95%CI, 0.01‐0.37; P = .002) and statin (HR, 0.35; 95%CI, 0.17‐0.73; P = .006) use was associated with lower rates of critical care admission. Our data lends confidence to observing usual practice in patients with COVID‐19 by continuing antecedent prescriptions in the absence of an alternative acute contraindication. We highlight potential benefits in investigation of diuretics, inhalers, pregabalin, and statins as therapeutic agents for COVID‐19 and support further assessment of the safety of gliclazide and proton pump inhibitors in the acute illness.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33908637</pmid><doi>10.1002/jcph.1878</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2311-9261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-2700 |
ispartof | Journal of clinical pharmacology, 2021-10, Vol.61 (10), p.1286-1300 |
issn | 0091-2700 1552-4604 1552-4604 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8242508 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aged Continuing Education: Therapeutics Coronaviruses COVID-19 COVID-19 - mortality COVID-19 - therapy COVID-19 Testing - methods Critical Care Outcomes Diuretics Female Hospitalization - statistics & numerical data Humans Inhalers Male medications Morbidity Mortality Prescription Drugs - classification Prescription Drugs - therapeutic use prescriptions Propensity Score propensity score matched Proton pump inhibitors Retrospective Studies Risk Assessment SARS-CoV-2 - drug effects SARS‐CoV‐2 severe acute respiratory syndrome coronavirus 2 Severity of Illness Index Statins Statistical analysis United Kingdom - epidemiology |
title | Pharmacological Predictors of Morbidity and Mortality in COVID‐19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacological%20Predictors%20of%20Morbidity%20and%20Mortality%20in%20COVID%E2%80%9019&rft.jtitle=Journal%20of%20clinical%20pharmacology&rft.au=Oddy,%20Christopher&rft.date=2021-10&rft.volume=61&rft.issue=10&rft.spage=1286&rft.epage=1300&rft.pages=1286-1300&rft.issn=0091-2700&rft.eissn=1552-4604&rft_id=info:doi/10.1002/jcph.1878&rft_dat=%3Cproquest_pubme%3E2571084063%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571084063&rft_id=info:pmid/33908637&rfr_iscdi=true |