Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)
Metal–organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial fo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-02, Vol.140 (5), p.1663-1673 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1673 |
---|---|
container_issue | 5 |
container_start_page | 1663 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Forse, Alexander C Gonzalez, Miguel I Siegelman, Rebecca L Witherspoon, Velencia J Jawahery, Sudi Mercado, Rocio Milner, Phillip J Martell, Jeffrey D Smit, Berend Blümich, Bernhard Long, Jeffrey R Reimer, Jeffrey A |
description | Metal–organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO2 within the pores of Zn2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO2 allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO2 diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D ∥ = (5.8 ± 0.1) × 10–9 m2 s–1 at a pressure of 625 mbar CO2), we unexpectedly find that CO2 is also able to diffuse between the hexagonal channels in the crystallographic ab plane (D ⊥ = (1.9 ± 0.2) × 10–10 m2 s–1), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO2 transport in a metal–organic framework with nominally one-dimensional porosity. |
doi_str_mv | 10.1021/jacs.7b09453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8240119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989544410</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3593-987c386dcc644807f2f17cc06a9a2c7ef256d3403aa12bf75332baf41f939fed3</originalsourceid><addsrcrecordid>eNpVkblOAzEQhi0EIuHoeACLCooFX3u4QUIJlxSUBhoKLK_XThw29mLvcnS8A2_Ik7BRIiGquX79o5kPgCOMzjAi-HwhVTzLS8RZSrfAEKcEJSkm2TYYIoRIkhcZHYC9GBd9yUiBd8GAcNrnBR2C50enPxqtWl3BsTWmi9Y7eOls9G3wzSf0Bo5kKPvm2PoPW2loHWznGt7rVtY_X9_TMJPOKngd5FK_-_ACnxw5qXzZVOr0AOwYWUd9uIn74PH66mF0m0ymN3ejy0kiacppwotc0SKrlMoYK1BuiMG5UiiTXBKVa0PSrKIMUSkxKU2eUkpKaRg2nHKjK7oPLta-TVcudaW0a4OsRRPsUoZP4aUV_yfOzsXMv4mCMIQx7w2O1wY-tlZEZVut5so7179GYJYxnJFedLLZEvxrp2MrljYqXdfSad9FgXnBU8YYRn_Sno5Y-C64_nyBkVgxEytmYsOM_gKXMIoB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989544410</pqid></control><display><type>article</type><title>Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)</title><source>ACS Publications</source><creator>Forse, Alexander C ; Gonzalez, Miguel I ; Siegelman, Rebecca L ; Witherspoon, Velencia J ; Jawahery, Sudi ; Mercado, Rocio ; Milner, Phillip J ; Martell, Jeffrey D ; Smit, Berend ; Blümich, Bernhard ; Long, Jeffrey R ; Reimer, Jeffrey A</creator><creatorcontrib>Forse, Alexander C ; Gonzalez, Miguel I ; Siegelman, Rebecca L ; Witherspoon, Velencia J ; Jawahery, Sudi ; Mercado, Rocio ; Milner, Phillip J ; Martell, Jeffrey D ; Smit, Berend ; Blümich, Bernhard ; Long, Jeffrey R ; Reimer, Jeffrey A ; Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Metal–organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO2 within the pores of Zn2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO2 allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO2 diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D ∥ = (5.8 ± 0.1) × 10–9 m2 s–1 at a pressure of 625 mbar CO2), we unexpectedly find that CO2 is also able to diffuse between the hexagonal channels in the crystallographic ab plane (D ⊥ = (1.9 ± 0.2) × 10–10 m2 s–1), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO2 transport in a metal–organic framework with nominally one-dimensional porosity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b09453</identifier><identifier>PMID: 29300483</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Journal of the American Chemical Society, 2018-02, Vol.140 (5), p.1663-1673</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9950-6199 ; 0000-0002-2718-6605 ; 0000-0003-4653-8562 ; 0000-0002-5324-1321 ; 0000-0001-9592-9821 ; 0000000227186605 ; 0000000346538562 ; 0000000253241321 ; 0000000195929821 ; 0000000199506199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b09453$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b09453$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1464162$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Forse, Alexander C</creatorcontrib><creatorcontrib>Gonzalez, Miguel I</creatorcontrib><creatorcontrib>Siegelman, Rebecca L</creatorcontrib><creatorcontrib>Witherspoon, Velencia J</creatorcontrib><creatorcontrib>Jawahery, Sudi</creatorcontrib><creatorcontrib>Mercado, Rocio</creatorcontrib><creatorcontrib>Milner, Phillip J</creatorcontrib><creatorcontrib>Martell, Jeffrey D</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><creatorcontrib>Blümich, Bernhard</creatorcontrib><creatorcontrib>Long, Jeffrey R</creatorcontrib><creatorcontrib>Reimer, Jeffrey A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Metal–organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO2 within the pores of Zn2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO2 allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO2 diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D ∥ = (5.8 ± 0.1) × 10–9 m2 s–1 at a pressure of 625 mbar CO2), we unexpectedly find that CO2 is also able to diffuse between the hexagonal channels in the crystallographic ab plane (D ⊥ = (1.9 ± 0.2) × 10–10 m2 s–1), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO2 transport in a metal–organic framework with nominally one-dimensional porosity.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkblOAzEQhi0EIuHoeACLCooFX3u4QUIJlxSUBhoKLK_XThw29mLvcnS8A2_Ik7BRIiGquX79o5kPgCOMzjAi-HwhVTzLS8RZSrfAEKcEJSkm2TYYIoRIkhcZHYC9GBd9yUiBd8GAcNrnBR2C50enPxqtWl3BsTWmi9Y7eOls9G3wzSf0Bo5kKPvm2PoPW2loHWznGt7rVtY_X9_TMJPOKngd5FK_-_ACnxw5qXzZVOr0AOwYWUd9uIn74PH66mF0m0ymN3ejy0kiacppwotc0SKrlMoYK1BuiMG5UiiTXBKVa0PSrKIMUSkxKU2eUkpKaRg2nHKjK7oPLta-TVcudaW0a4OsRRPsUoZP4aUV_yfOzsXMv4mCMIQx7w2O1wY-tlZEZVut5so7179GYJYxnJFedLLZEvxrp2MrljYqXdfSad9FgXnBU8YYRn_Sno5Y-C64_nyBkVgxEytmYsOM_gKXMIoB</recordid><startdate>20180207</startdate><enddate>20180207</enddate><creator>Forse, Alexander C</creator><creator>Gonzalez, Miguel I</creator><creator>Siegelman, Rebecca L</creator><creator>Witherspoon, Velencia J</creator><creator>Jawahery, Sudi</creator><creator>Mercado, Rocio</creator><creator>Milner, Phillip J</creator><creator>Martell, Jeffrey D</creator><creator>Smit, Berend</creator><creator>Blümich, Bernhard</creator><creator>Long, Jeffrey R</creator><creator>Reimer, Jeffrey A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9950-6199</orcidid><orcidid>https://orcid.org/0000-0002-2718-6605</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000-0001-9592-9821</orcidid><orcidid>https://orcid.org/0000000227186605</orcidid><orcidid>https://orcid.org/0000000346538562</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000195929821</orcidid><orcidid>https://orcid.org/0000000199506199</orcidid></search><sort><creationdate>20180207</creationdate><title>Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)</title><author>Forse, Alexander C ; Gonzalez, Miguel I ; Siegelman, Rebecca L ; Witherspoon, Velencia J ; Jawahery, Sudi ; Mercado, Rocio ; Milner, Phillip J ; Martell, Jeffrey D ; Smit, Berend ; Blümich, Bernhard ; Long, Jeffrey R ; Reimer, Jeffrey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3593-987c386dcc644807f2f17cc06a9a2c7ef256d3403aa12bf75332baf41f939fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forse, Alexander C</creatorcontrib><creatorcontrib>Gonzalez, Miguel I</creatorcontrib><creatorcontrib>Siegelman, Rebecca L</creatorcontrib><creatorcontrib>Witherspoon, Velencia J</creatorcontrib><creatorcontrib>Jawahery, Sudi</creatorcontrib><creatorcontrib>Mercado, Rocio</creatorcontrib><creatorcontrib>Milner, Phillip J</creatorcontrib><creatorcontrib>Martell, Jeffrey D</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><creatorcontrib>Blümich, Bernhard</creatorcontrib><creatorcontrib>Long, Jeffrey R</creatorcontrib><creatorcontrib>Reimer, Jeffrey A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forse, Alexander C</au><au>Gonzalez, Miguel I</au><au>Siegelman, Rebecca L</au><au>Witherspoon, Velencia J</au><au>Jawahery, Sudi</au><au>Mercado, Rocio</au><au>Milner, Phillip J</au><au>Martell, Jeffrey D</au><au>Smit, Berend</au><au>Blümich, Bernhard</au><au>Long, Jeffrey R</au><au>Reimer, Jeffrey A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-02-07</date><risdate>2018</risdate><volume>140</volume><issue>5</issue><spage>1663</spage><epage>1673</epage><pages>1663-1673</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Metal–organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO2 within the pores of Zn2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO2 allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO2 diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D ∥ = (5.8 ± 0.1) × 10–9 m2 s–1 at a pressure of 625 mbar CO2), we unexpectedly find that CO2 is also able to diffuse between the hexagonal channels in the crystallographic ab plane (D ⊥ = (1.9 ± 0.2) × 10–10 m2 s–1), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO2 transport in a metal–organic framework with nominally one-dimensional porosity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29300483</pmid><doi>10.1021/jacs.7b09453</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9950-6199</orcidid><orcidid>https://orcid.org/0000-0002-2718-6605</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000-0001-9592-9821</orcidid><orcidid>https://orcid.org/0000000227186605</orcidid><orcidid>https://orcid.org/0000000346538562</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000195929821</orcidid><orcidid>https://orcid.org/0000000199506199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-02, Vol.140 (5), p.1663-1673 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8240119 |
source | ACS Publications |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unexpected%20Diffusion%20Anisotropy%20of%20Carbon%20Dioxide%20in%20the%20Metal%E2%80%93Organic%20Framework%20Zn2(dobpdc)&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Forse,%20Alexander%20C&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2018-02-07&rft.volume=140&rft.issue=5&rft.spage=1663&rft.epage=1673&rft.pages=1663-1673&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b09453&rft_dat=%3Cproquest_pubme%3E1989544410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989544410&rft_id=info:pmid/29300483&rfr_iscdi=true |