Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA

Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (25), p.1-12
Hauptverfasser: Wang, Xuejie, Dong, Yang, Zhao, Xiaocong, Li, Jinbao, Lee, Jordan, Yan, Zhenxin, Yang, Shuangshuang, Wu, Wenqiang, Hou, Ximiao, Liu, Guangxue, Zhang, Yueyue, Song, Lun, Cai, Gang, Li, Qing, Ira, Grzegorz, Zhang, Xinghua, Chen, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 25
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Wang, Xuejie
Dong, Yang
Zhao, Xiaocong
Li, Jinbao
Lee, Jordan
Yan, Zhenxin
Yang, Shuangshuang
Wu, Wenqiang
Hou, Ximiao
Liu, Guangxue
Zhang, Yueyue
Song, Lun
Cai, Gang
Li, Qing
Ira, Grzegorz
Zhang, Xinghua
Chen, Xuefeng
description Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.
doi_str_mv 10.1073/pnas.2106393118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27041093</jstor_id><sourcerecordid>27041093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFSEl2aY955Qg6NnJ6MOydQksSb8gtCW0ZyFL8q4Wr-VI2sL--8psumlPM8N78-YxD6FLAjcEGnY7jTrdUAKCSUZIe4IWBCSpBJdwihYAtKlaTvk5epvSBgBk3cIZOmeccOAgFuj5KWcCNZ5i2IbsEl771brqvXWDz3v88G2Jo5sGb3T2YcR6tPOsfcTdvnSr3VCAcYXz2uFUmsFVKcdCc3Zerjo_2hnvtckh4qcfy3foTa-H5N6_1Av069PHn_dfqsfvn7_eLx8rwznLFaWNcLx4bC2zRrtaMmr6ujei40TXTBPJpRa1tbqRDe8csYIKCQ1tDZWCswt0d9Cddt3WWePG4mtQU_RbHfcqaK_-R0a_VqvwW7WUNaKmReDDi0AMzzuXstqEXRyLZ0VrLggrBuYztweWiSGl6PrjBQJqzkjNGanXjMrG9b_Gjvy_oRTC1YGwSeVnR5w2wEu6jP0BKiOXfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546139494</pqid></control><display><type>article</type><title>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xuejie ; Dong, Yang ; Zhao, Xiaocong ; Li, Jinbao ; Lee, Jordan ; Yan, Zhenxin ; Yang, Shuangshuang ; Wu, Wenqiang ; Hou, Ximiao ; Liu, Guangxue ; Zhang, Yueyue ; Song, Lun ; Cai, Gang ; Li, Qing ; Ira, Grzegorz ; Zhang, Xinghua ; Chen, Xuefeng</creator><creatorcontrib>Wang, Xuejie ; Dong, Yang ; Zhao, Xiaocong ; Li, Jinbao ; Lee, Jordan ; Yan, Zhenxin ; Yang, Shuangshuang ; Wu, Wenqiang ; Hou, Ximiao ; Liu, Guangxue ; Zhang, Yueyue ; Song, Lun ; Cai, Gang ; Li, Qing ; Ira, Grzegorz ; Zhang, Xinghua ; Chen, Xuefeng</creatorcontrib><description>Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2106393118</identifier><identifier>PMID: 34140406</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accuracy ; Active Transport, Cell Nucleus ; Assembly ; Binding ; Biological Sciences ; Carrier Proteins - metabolism ; Cell Nucleus - metabolism ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA Replication ; DNA, Single-Stranded - metabolism ; DNA-binding protein ; Double-strand break repair ; Fidelity ; Gene Conversion ; Gene Deletion ; Gene Duplication ; Homologous recombination ; Homologous recombination repair ; Homology ; Humans ; Models, Biological ; Mutation ; Nuclear transport ; Protein A ; Protein Binding ; Proteins ; Rad51 Recombinase - metabolism ; Repair ; Replication ; Replication protein A ; Replication Protein A - metabolism ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Single-stranded DNA ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-12</ispartof><rights>Copyright National Academy of Sciences Jun 22, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</citedby><cites>FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</cites><orcidid>0000-0002-9487-191X ; 0000-0001-6214-3523 ; 0000-0003-4186-5708 ; 0000-0003-3293-1603 ; 0000-0003-4082-2175 ; 0000-0003-0251-9159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27041093$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27041093$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34140406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuejie</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Zhao, Xiaocong</creatorcontrib><creatorcontrib>Li, Jinbao</creatorcontrib><creatorcontrib>Lee, Jordan</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Yang, Shuangshuang</creatorcontrib><creatorcontrib>Wu, Wenqiang</creatorcontrib><creatorcontrib>Hou, Ximiao</creatorcontrib><creatorcontrib>Liu, Guangxue</creatorcontrib><creatorcontrib>Zhang, Yueyue</creatorcontrib><creatorcontrib>Song, Lun</creatorcontrib><creatorcontrib>Cai, Gang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><title>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.</description><subject>Accuracy</subject><subject>Active Transport, Cell Nucleus</subject><subject>Assembly</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-binding protein</subject><subject>Double-strand break repair</subject><subject>Fidelity</subject><subject>Gene Conversion</subject><subject>Gene Deletion</subject><subject>Gene Duplication</subject><subject>Homologous recombination</subject><subject>Homologous recombination repair</subject><subject>Homology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Nuclear transport</subject><subject>Protein A</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rad51 Recombinase - metabolism</subject><subject>Repair</subject><subject>Replication</subject><subject>Replication protein A</subject><subject>Replication Protein A - metabolism</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-stranded DNA</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1r3DAQFSEl2aY955Qg6NnJ6MOydQksSb8gtCW0ZyFL8q4Wr-VI2sL--8psumlPM8N78-YxD6FLAjcEGnY7jTrdUAKCSUZIe4IWBCSpBJdwihYAtKlaTvk5epvSBgBk3cIZOmeccOAgFuj5KWcCNZ5i2IbsEl771brqvXWDz3v88G2Jo5sGb3T2YcR6tPOsfcTdvnSr3VCAcYXz2uFUmsFVKcdCc3Zerjo_2hnvtckh4qcfy3foTa-H5N6_1Av069PHn_dfqsfvn7_eLx8rwznLFaWNcLx4bC2zRrtaMmr6ujei40TXTBPJpRa1tbqRDe8csYIKCQ1tDZWCswt0d9Cddt3WWePG4mtQU_RbHfcqaK_-R0a_VqvwW7WUNaKmReDDi0AMzzuXstqEXRyLZ0VrLggrBuYztweWiSGl6PrjBQJqzkjNGanXjMrG9b_Gjvy_oRTC1YGwSeVnR5w2wEu6jP0BKiOXfw</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Wang, Xuejie</creator><creator>Dong, Yang</creator><creator>Zhao, Xiaocong</creator><creator>Li, Jinbao</creator><creator>Lee, Jordan</creator><creator>Yan, Zhenxin</creator><creator>Yang, Shuangshuang</creator><creator>Wu, Wenqiang</creator><creator>Hou, Ximiao</creator><creator>Liu, Guangxue</creator><creator>Zhang, Yueyue</creator><creator>Song, Lun</creator><creator>Cai, Gang</creator><creator>Li, Qing</creator><creator>Ira, Grzegorz</creator><creator>Zhang, Xinghua</creator><creator>Chen, Xuefeng</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9487-191X</orcidid><orcidid>https://orcid.org/0000-0001-6214-3523</orcidid><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0003-3293-1603</orcidid><orcidid>https://orcid.org/0000-0003-4082-2175</orcidid><orcidid>https://orcid.org/0000-0003-0251-9159</orcidid></search><sort><creationdate>20210622</creationdate><title>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</title><author>Wang, Xuejie ; Dong, Yang ; Zhao, Xiaocong ; Li, Jinbao ; Lee, Jordan ; Yan, Zhenxin ; Yang, Shuangshuang ; Wu, Wenqiang ; Hou, Ximiao ; Liu, Guangxue ; Zhang, Yueyue ; Song, Lun ; Cai, Gang ; Li, Qing ; Ira, Grzegorz ; Zhang, Xinghua ; Chen, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Active Transport, Cell Nucleus</topic><topic>Assembly</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-binding protein</topic><topic>Double-strand break repair</topic><topic>Fidelity</topic><topic>Gene Conversion</topic><topic>Gene Deletion</topic><topic>Gene Duplication</topic><topic>Homologous recombination</topic><topic>Homologous recombination repair</topic><topic>Homology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Nuclear transport</topic><topic>Protein A</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rad51 Recombinase - metabolism</topic><topic>Repair</topic><topic>Replication</topic><topic>Replication protein A</topic><topic>Replication Protein A - metabolism</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-stranded DNA</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuejie</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Zhao, Xiaocong</creatorcontrib><creatorcontrib>Li, Jinbao</creatorcontrib><creatorcontrib>Lee, Jordan</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Yang, Shuangshuang</creatorcontrib><creatorcontrib>Wu, Wenqiang</creatorcontrib><creatorcontrib>Hou, Ximiao</creatorcontrib><creatorcontrib>Liu, Guangxue</creatorcontrib><creatorcontrib>Zhang, Yueyue</creatorcontrib><creatorcontrib>Song, Lun</creatorcontrib><creatorcontrib>Cai, Gang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuejie</au><au>Dong, Yang</au><au>Zhao, Xiaocong</au><au>Li, Jinbao</au><au>Lee, Jordan</au><au>Yan, Zhenxin</au><au>Yang, Shuangshuang</au><au>Wu, Wenqiang</au><au>Hou, Ximiao</au><au>Liu, Guangxue</au><au>Zhang, Yueyue</au><au>Song, Lun</au><au>Cai, Gang</au><au>Li, Qing</au><au>Ira, Grzegorz</au><au>Zhang, Xinghua</au><au>Chen, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>118</volume><issue>25</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34140406</pmid><doi>10.1073/pnas.2106393118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9487-191X</orcidid><orcidid>https://orcid.org/0000-0001-6214-3523</orcidid><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0003-3293-1603</orcidid><orcidid>https://orcid.org/0000-0003-4082-2175</orcidid><orcidid>https://orcid.org/0000-0003-0251-9159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237652
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accuracy
Active Transport, Cell Nucleus
Assembly
Binding
Biological Sciences
Carrier Proteins - metabolism
Cell Nucleus - metabolism
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
DNA Replication
DNA, Single-Stranded - metabolism
DNA-binding protein
Double-strand break repair
Fidelity
Gene Conversion
Gene Deletion
Gene Duplication
Homologous recombination
Homologous recombination repair
Homology
Humans
Models, Biological
Mutation
Nuclear transport
Protein A
Protein Binding
Proteins
Rad51 Recombinase - metabolism
Repair
Replication
Replication protein A
Replication Protein A - metabolism
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Single-stranded DNA
Yeasts
title Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rtt105%20promotes%20high-fidelity%20DNA%20replication%20and%20repair%20by%20regulating%20the%20single-stranded%20DNA-binding%20factor%20RPA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Xuejie&rft.date=2021-06-22&rft.volume=118&rft.issue=25&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2106393118&rft_dat=%3Cjstor_pubme%3E27041093%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546139494&rft_id=info:pmid/34140406&rft_jstor_id=27041093&rfr_iscdi=true