Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA
Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein req...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (25), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 25 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Wang, Xuejie Dong, Yang Zhao, Xiaocong Li, Jinbao Lee, Jordan Yan, Zhenxin Yang, Shuangshuang Wu, Wenqiang Hou, Ximiao Liu, Guangxue Zhang, Yueyue Song, Lun Cai, Gang Li, Qing Ira, Grzegorz Zhang, Xinghua Chen, Xuefeng |
description | Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism. |
doi_str_mv | 10.1073/pnas.2106393118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27041093</jstor_id><sourcerecordid>27041093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFSEl2aY955Qg6NnJ6MOydQksSb8gtCW0ZyFL8q4Wr-VI2sL--8psumlPM8N78-YxD6FLAjcEGnY7jTrdUAKCSUZIe4IWBCSpBJdwihYAtKlaTvk5epvSBgBk3cIZOmeccOAgFuj5KWcCNZ5i2IbsEl771brqvXWDz3v88G2Jo5sGb3T2YcR6tPOsfcTdvnSr3VCAcYXz2uFUmsFVKcdCc3Zerjo_2hnvtckh4qcfy3foTa-H5N6_1Av069PHn_dfqsfvn7_eLx8rwznLFaWNcLx4bC2zRrtaMmr6ujei40TXTBPJpRa1tbqRDe8csYIKCQ1tDZWCswt0d9Cddt3WWePG4mtQU_RbHfcqaK_-R0a_VqvwW7WUNaKmReDDi0AMzzuXstqEXRyLZ0VrLggrBuYztweWiSGl6PrjBQJqzkjNGanXjMrG9b_Gjvy_oRTC1YGwSeVnR5w2wEu6jP0BKiOXfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546139494</pqid></control><display><type>article</type><title>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xuejie ; Dong, Yang ; Zhao, Xiaocong ; Li, Jinbao ; Lee, Jordan ; Yan, Zhenxin ; Yang, Shuangshuang ; Wu, Wenqiang ; Hou, Ximiao ; Liu, Guangxue ; Zhang, Yueyue ; Song, Lun ; Cai, Gang ; Li, Qing ; Ira, Grzegorz ; Zhang, Xinghua ; Chen, Xuefeng</creator><creatorcontrib>Wang, Xuejie ; Dong, Yang ; Zhao, Xiaocong ; Li, Jinbao ; Lee, Jordan ; Yan, Zhenxin ; Yang, Shuangshuang ; Wu, Wenqiang ; Hou, Ximiao ; Liu, Guangxue ; Zhang, Yueyue ; Song, Lun ; Cai, Gang ; Li, Qing ; Ira, Grzegorz ; Zhang, Xinghua ; Chen, Xuefeng</creatorcontrib><description>Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2106393118</identifier><identifier>PMID: 34140406</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accuracy ; Active Transport, Cell Nucleus ; Assembly ; Binding ; Biological Sciences ; Carrier Proteins - metabolism ; Cell Nucleus - metabolism ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA Replication ; DNA, Single-Stranded - metabolism ; DNA-binding protein ; Double-strand break repair ; Fidelity ; Gene Conversion ; Gene Deletion ; Gene Duplication ; Homologous recombination ; Homologous recombination repair ; Homology ; Humans ; Models, Biological ; Mutation ; Nuclear transport ; Protein A ; Protein Binding ; Proteins ; Rad51 Recombinase - metabolism ; Repair ; Replication ; Replication protein A ; Replication Protein A - metabolism ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Single-stranded DNA ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-12</ispartof><rights>Copyright National Academy of Sciences Jun 22, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</citedby><cites>FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</cites><orcidid>0000-0002-9487-191X ; 0000-0001-6214-3523 ; 0000-0003-4186-5708 ; 0000-0003-3293-1603 ; 0000-0003-4082-2175 ; 0000-0003-0251-9159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27041093$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27041093$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34140406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuejie</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Zhao, Xiaocong</creatorcontrib><creatorcontrib>Li, Jinbao</creatorcontrib><creatorcontrib>Lee, Jordan</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Yang, Shuangshuang</creatorcontrib><creatorcontrib>Wu, Wenqiang</creatorcontrib><creatorcontrib>Hou, Ximiao</creatorcontrib><creatorcontrib>Liu, Guangxue</creatorcontrib><creatorcontrib>Zhang, Yueyue</creatorcontrib><creatorcontrib>Song, Lun</creatorcontrib><creatorcontrib>Cai, Gang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><title>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.</description><subject>Accuracy</subject><subject>Active Transport, Cell Nucleus</subject><subject>Assembly</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-binding protein</subject><subject>Double-strand break repair</subject><subject>Fidelity</subject><subject>Gene Conversion</subject><subject>Gene Deletion</subject><subject>Gene Duplication</subject><subject>Homologous recombination</subject><subject>Homologous recombination repair</subject><subject>Homology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Nuclear transport</subject><subject>Protein A</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rad51 Recombinase - metabolism</subject><subject>Repair</subject><subject>Replication</subject><subject>Replication protein A</subject><subject>Replication Protein A - metabolism</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-stranded DNA</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1r3DAQFSEl2aY955Qg6NnJ6MOydQksSb8gtCW0ZyFL8q4Wr-VI2sL--8psumlPM8N78-YxD6FLAjcEGnY7jTrdUAKCSUZIe4IWBCSpBJdwihYAtKlaTvk5epvSBgBk3cIZOmeccOAgFuj5KWcCNZ5i2IbsEl771brqvXWDz3v88G2Jo5sGb3T2YcR6tPOsfcTdvnSr3VCAcYXz2uFUmsFVKcdCc3Zerjo_2hnvtckh4qcfy3foTa-H5N6_1Av069PHn_dfqsfvn7_eLx8rwznLFaWNcLx4bC2zRrtaMmr6ujei40TXTBPJpRa1tbqRDe8csYIKCQ1tDZWCswt0d9Cddt3WWePG4mtQU_RbHfcqaK_-R0a_VqvwW7WUNaKmReDDi0AMzzuXstqEXRyLZ0VrLggrBuYztweWiSGl6PrjBQJqzkjNGanXjMrG9b_Gjvy_oRTC1YGwSeVnR5w2wEu6jP0BKiOXfw</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Wang, Xuejie</creator><creator>Dong, Yang</creator><creator>Zhao, Xiaocong</creator><creator>Li, Jinbao</creator><creator>Lee, Jordan</creator><creator>Yan, Zhenxin</creator><creator>Yang, Shuangshuang</creator><creator>Wu, Wenqiang</creator><creator>Hou, Ximiao</creator><creator>Liu, Guangxue</creator><creator>Zhang, Yueyue</creator><creator>Song, Lun</creator><creator>Cai, Gang</creator><creator>Li, Qing</creator><creator>Ira, Grzegorz</creator><creator>Zhang, Xinghua</creator><creator>Chen, Xuefeng</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9487-191X</orcidid><orcidid>https://orcid.org/0000-0001-6214-3523</orcidid><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0003-3293-1603</orcidid><orcidid>https://orcid.org/0000-0003-4082-2175</orcidid><orcidid>https://orcid.org/0000-0003-0251-9159</orcidid></search><sort><creationdate>20210622</creationdate><title>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</title><author>Wang, Xuejie ; Dong, Yang ; Zhao, Xiaocong ; Li, Jinbao ; Lee, Jordan ; Yan, Zhenxin ; Yang, Shuangshuang ; Wu, Wenqiang ; Hou, Ximiao ; Liu, Guangxue ; Zhang, Yueyue ; Song, Lun ; Cai, Gang ; Li, Qing ; Ira, Grzegorz ; Zhang, Xinghua ; Chen, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2276e44068d3dcae5932cf5fc6b41a53a1949a65dda7974be1d62690728c29643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Active Transport, Cell Nucleus</topic><topic>Assembly</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-binding protein</topic><topic>Double-strand break repair</topic><topic>Fidelity</topic><topic>Gene Conversion</topic><topic>Gene Deletion</topic><topic>Gene Duplication</topic><topic>Homologous recombination</topic><topic>Homologous recombination repair</topic><topic>Homology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Nuclear transport</topic><topic>Protein A</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rad51 Recombinase - metabolism</topic><topic>Repair</topic><topic>Replication</topic><topic>Replication protein A</topic><topic>Replication Protein A - metabolism</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-stranded DNA</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuejie</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Zhao, Xiaocong</creatorcontrib><creatorcontrib>Li, Jinbao</creatorcontrib><creatorcontrib>Lee, Jordan</creatorcontrib><creatorcontrib>Yan, Zhenxin</creatorcontrib><creatorcontrib>Yang, Shuangshuang</creatorcontrib><creatorcontrib>Wu, Wenqiang</creatorcontrib><creatorcontrib>Hou, Ximiao</creatorcontrib><creatorcontrib>Liu, Guangxue</creatorcontrib><creatorcontrib>Zhang, Yueyue</creatorcontrib><creatorcontrib>Song, Lun</creatorcontrib><creatorcontrib>Cai, Gang</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Ira, Grzegorz</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuejie</au><au>Dong, Yang</au><au>Zhao, Xiaocong</au><au>Li, Jinbao</au><au>Lee, Jordan</au><au>Yan, Zhenxin</au><au>Yang, Shuangshuang</au><au>Wu, Wenqiang</au><au>Hou, Ximiao</au><au>Liu, Guangxue</au><au>Zhang, Yueyue</au><au>Song, Lun</au><au>Cai, Gang</au><au>Li, Qing</au><au>Ira, Grzegorz</au><au>Zhang, Xinghua</au><au>Chen, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>118</volume><issue>25</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or breakinduced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34140406</pmid><doi>10.1073/pnas.2106393118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9487-191X</orcidid><orcidid>https://orcid.org/0000-0001-6214-3523</orcidid><orcidid>https://orcid.org/0000-0003-4186-5708</orcidid><orcidid>https://orcid.org/0000-0003-3293-1603</orcidid><orcidid>https://orcid.org/0000-0003-4082-2175</orcidid><orcidid>https://orcid.org/0000-0003-0251-9159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237652 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accuracy Active Transport, Cell Nucleus Assembly Binding Biological Sciences Carrier Proteins - metabolism Cell Nucleus - metabolism Deoxyribonucleic acid DNA DNA biosynthesis DNA Breaks, Double-Stranded DNA damage DNA Repair DNA Replication DNA, Single-Stranded - metabolism DNA-binding protein Double-strand break repair Fidelity Gene Conversion Gene Deletion Gene Duplication Homologous recombination Homologous recombination repair Homology Humans Models, Biological Mutation Nuclear transport Protein A Protein Binding Proteins Rad51 Recombinase - metabolism Repair Replication Replication protein A Replication Protein A - metabolism RNA-Binding Proteins - metabolism Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Single-stranded DNA Yeasts |
title | Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rtt105%20promotes%20high-fidelity%20DNA%20replication%20and%20repair%20by%20regulating%20the%20single-stranded%20DNA-binding%20factor%20RPA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Xuejie&rft.date=2021-06-22&rft.volume=118&rft.issue=25&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2106393118&rft_dat=%3Cjstor_pubme%3E27041093%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546139494&rft_id=info:pmid/34140406&rft_jstor_id=27041093&rfr_iscdi=true |