TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accomp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (25), p.1-8
Hauptverfasser: López-Pérez, Wilfred, Sai, Kazuhito, Sakamachi, Yosuke, Parsons, Cameron, Kathariou, Sophia, Ninomiya-Tsuji, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 25
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator López-Pérez, Wilfred
Sai, Kazuhito
Sakamachi, Yosuke
Parsons, Cameron
Kathariou, Sophia
Ninomiya-Tsuji, Jun
description Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.
doi_str_mv 10.1073/pnas.2023647118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27041097</jstor_id><sourcerecordid>27041097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</originalsourceid><addsrcrecordid>eNpdkUtP3DAURq2qqAyUdVetInXDJnD9jLOphFBfAgkJqFhajuN0PPXEU9upVH59HQamtCsv7rmf76eD0BsMJxgaeroZdTohQKhgDcbyBVpgaHEtWAsv0QKANLVkhO2jg5RWANByCa_QPmVYYCL4At3dnl3gyo1L17nswlhZ74zLqVq7HMwyjH102lfXVzdVDlXng_lR6By1sd5PXseq0ybbB8gEH0Z3r-ec12hv0D7Zo8f3EH379PH2_Et9efX56_nZZW0Yo7nuLHCuKQxsMJxqbHusNaGNoX3Pe94JGIZOiAEDaU3BtB0IByG7skSb3tBD9GGbu5m6te2NnW_zahPdWsffKmin_p2Mbqm-h19Kll94y0rA8WNADD8nm7JauzSX06MNU1KEMyYlbtmMvv8PXYUpjqXeTAlMJZFtoU63lIkhpWiH3TEY1CxNzdLUX2ll493zDjv-yVIB3m6BVcoh7uakAVZ0N_QPRNSelw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546138289</pqid></control><display><type>article</type><title>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>López-Pérez, Wilfred ; Sai, Kazuhito ; Sakamachi, Yosuke ; Parsons, Cameron ; Kathariou, Sophia ; Ninomiya-Tsuji, Jun</creator><creatorcontrib>López-Pérez, Wilfred ; Sai, Kazuhito ; Sakamachi, Yosuke ; Parsons, Cameron ; Kathariou, Sophia ; Ninomiya-Tsuji, Jun</creatorcontrib><description>Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023647118</identifier><identifier>PMID: 34161265</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Animals ; Bacteria ; Bacteria - growth &amp; development ; Biological Sciences ; Caspase 3 - metabolism ; Caspase-8 ; Cell death ; Colonization ; Colony Count, Microbial ; Gene deletion ; Hydrogen Sulfide - pharmacology ; Inflammation ; Intracellular ; Intracellular signalling ; Intracellular Space - microbiology ; Kinases ; MAP kinase ; MAP Kinase Kinase Kinases - antagonists &amp; inhibitors ; MAP Kinase Kinase Kinases - metabolism ; Membrane proteins ; Mice ; Mitochondria ; Mitochondria - metabolism ; Pathogens ; Protein kinase ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Salmonella - drug effects ; Salmonella - growth &amp; development ; Signaling ; TAK1 protein ; Yersinia - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-8</ispartof><rights>Copyright National Academy of Sciences Jun 22, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</citedby><cites>FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</cites><orcidid>0000-0003-3653-0567 ; 0000-0002-5584-0176 ; 0000-0002-5307-2222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27041097$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27041097$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34161265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Pérez, Wilfred</creatorcontrib><creatorcontrib>Sai, Kazuhito</creatorcontrib><creatorcontrib>Sakamachi, Yosuke</creatorcontrib><creatorcontrib>Parsons, Cameron</creatorcontrib><creatorcontrib>Kathariou, Sophia</creatorcontrib><creatorcontrib>Ninomiya-Tsuji, Jun</creatorcontrib><title>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.</description><subject>Ablation</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - growth &amp; development</subject><subject>Biological Sciences</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-8</subject><subject>Cell death</subject><subject>Colonization</subject><subject>Colony Count, Microbial</subject><subject>Gene deletion</subject><subject>Hydrogen Sulfide - pharmacology</subject><subject>Inflammation</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Intracellular Space - microbiology</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>MAP Kinase Kinase Kinases - antagonists &amp; inhibitors</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Pathogens</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Salmonella - drug effects</subject><subject>Salmonella - growth &amp; development</subject><subject>Signaling</subject><subject>TAK1 protein</subject><subject>Yersinia - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtP3DAURq2qqAyUdVetInXDJnD9jLOphFBfAgkJqFhajuN0PPXEU9upVH59HQamtCsv7rmf76eD0BsMJxgaeroZdTohQKhgDcbyBVpgaHEtWAsv0QKANLVkhO2jg5RWANByCa_QPmVYYCL4At3dnl3gyo1L17nswlhZ74zLqVq7HMwyjH102lfXVzdVDlXng_lR6By1sd5PXseq0ybbB8gEH0Z3r-ec12hv0D7Zo8f3EH379PH2_Et9efX56_nZZW0Yo7nuLHCuKQxsMJxqbHusNaGNoX3Pe94JGIZOiAEDaU3BtB0IByG7skSb3tBD9GGbu5m6te2NnW_zahPdWsffKmin_p2Mbqm-h19Kll94y0rA8WNADD8nm7JauzSX06MNU1KEMyYlbtmMvv8PXYUpjqXeTAlMJZFtoU63lIkhpWiH3TEY1CxNzdLUX2ll493zDjv-yVIB3m6BVcoh7uakAVZ0N_QPRNSelw</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>López-Pérez, Wilfred</creator><creator>Sai, Kazuhito</creator><creator>Sakamachi, Yosuke</creator><creator>Parsons, Cameron</creator><creator>Kathariou, Sophia</creator><creator>Ninomiya-Tsuji, Jun</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3653-0567</orcidid><orcidid>https://orcid.org/0000-0002-5584-0176</orcidid><orcidid>https://orcid.org/0000-0002-5307-2222</orcidid></search><sort><creationdate>20210622</creationdate><title>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</title><author>López-Pérez, Wilfred ; Sai, Kazuhito ; Sakamachi, Yosuke ; Parsons, Cameron ; Kathariou, Sophia ; Ninomiya-Tsuji, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - growth &amp; development</topic><topic>Biological Sciences</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-8</topic><topic>Cell death</topic><topic>Colonization</topic><topic>Colony Count, Microbial</topic><topic>Gene deletion</topic><topic>Hydrogen Sulfide - pharmacology</topic><topic>Inflammation</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Intracellular Space - microbiology</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>MAP Kinase Kinase Kinases - antagonists &amp; inhibitors</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Pathogens</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Salmonella - drug effects</topic><topic>Salmonella - growth &amp; development</topic><topic>Signaling</topic><topic>TAK1 protein</topic><topic>Yersinia - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Pérez, Wilfred</creatorcontrib><creatorcontrib>Sai, Kazuhito</creatorcontrib><creatorcontrib>Sakamachi, Yosuke</creatorcontrib><creatorcontrib>Parsons, Cameron</creatorcontrib><creatorcontrib>Kathariou, Sophia</creatorcontrib><creatorcontrib>Ninomiya-Tsuji, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Pérez, Wilfred</au><au>Sai, Kazuhito</au><au>Sakamachi, Yosuke</au><au>Parsons, Cameron</au><au>Kathariou, Sophia</au><au>Ninomiya-Tsuji, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>118</volume><issue>25</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34161265</pmid><doi>10.1073/pnas.2023647118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3653-0567</orcidid><orcidid>https://orcid.org/0000-0002-5584-0176</orcidid><orcidid>https://orcid.org/0000-0002-5307-2222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237594
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
Animals
Bacteria
Bacteria - growth & development
Biological Sciences
Caspase 3 - metabolism
Caspase-8
Cell death
Colonization
Colony Count, Microbial
Gene deletion
Hydrogen Sulfide - pharmacology
Inflammation
Intracellular
Intracellular signalling
Intracellular Space - microbiology
Kinases
MAP kinase
MAP Kinase Kinase Kinases - antagonists & inhibitors
MAP Kinase Kinase Kinases - metabolism
Membrane proteins
Mice
Mitochondria
Mitochondria - metabolism
Pathogens
Protein kinase
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Salmonella - drug effects
Salmonella - growth & development
Signaling
TAK1 protein
Yersinia - drug effects
title TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAK1%20inhibition%20elicits%20mitochondrial%20ROS%20to%20block%20intracellular%20bacterial%20colonization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=L%C3%B3pez-P%C3%A9rez,%20Wilfred&rft.date=2021-06-22&rft.volume=118&rft.issue=25&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023647118&rft_dat=%3Cjstor_pubme%3E27041097%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546138289&rft_id=info:pmid/34161265&rft_jstor_id=27041097&rfr_iscdi=true