TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization
Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accomp...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (25), p.1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 25 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | López-Pérez, Wilfred Sai, Kazuhito Sakamachi, Yosuke Parsons, Cameron Kathariou, Sophia Ninomiya-Tsuji, Jun |
description | Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens. |
doi_str_mv | 10.1073/pnas.2023647118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27041097</jstor_id><sourcerecordid>27041097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</originalsourceid><addsrcrecordid>eNpdkUtP3DAURq2qqAyUdVetInXDJnD9jLOphFBfAgkJqFhajuN0PPXEU9upVH59HQamtCsv7rmf76eD0BsMJxgaeroZdTohQKhgDcbyBVpgaHEtWAsv0QKANLVkhO2jg5RWANByCa_QPmVYYCL4At3dnl3gyo1L17nswlhZ74zLqVq7HMwyjH102lfXVzdVDlXng_lR6By1sd5PXseq0ybbB8gEH0Z3r-ec12hv0D7Zo8f3EH379PH2_Et9efX56_nZZW0Yo7nuLHCuKQxsMJxqbHusNaGNoX3Pe94JGIZOiAEDaU3BtB0IByG7skSb3tBD9GGbu5m6te2NnW_zahPdWsffKmin_p2Mbqm-h19Kll94y0rA8WNADD8nm7JauzSX06MNU1KEMyYlbtmMvv8PXYUpjqXeTAlMJZFtoU63lIkhpWiH3TEY1CxNzdLUX2ll493zDjv-yVIB3m6BVcoh7uakAVZ0N_QPRNSelw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546138289</pqid></control><display><type>article</type><title>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>López-Pérez, Wilfred ; Sai, Kazuhito ; Sakamachi, Yosuke ; Parsons, Cameron ; Kathariou, Sophia ; Ninomiya-Tsuji, Jun</creator><creatorcontrib>López-Pérez, Wilfred ; Sai, Kazuhito ; Sakamachi, Yosuke ; Parsons, Cameron ; Kathariou, Sophia ; Ninomiya-Tsuji, Jun</creatorcontrib><description>Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023647118</identifier><identifier>PMID: 34161265</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Animals ; Bacteria ; Bacteria - growth & development ; Biological Sciences ; Caspase 3 - metabolism ; Caspase-8 ; Cell death ; Colonization ; Colony Count, Microbial ; Gene deletion ; Hydrogen Sulfide - pharmacology ; Inflammation ; Intracellular ; Intracellular signalling ; Intracellular Space - microbiology ; Kinases ; MAP kinase ; MAP Kinase Kinase Kinases - antagonists & inhibitors ; MAP Kinase Kinase Kinases - metabolism ; Membrane proteins ; Mice ; Mitochondria ; Mitochondria - metabolism ; Pathogens ; Protein kinase ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Salmonella - drug effects ; Salmonella - growth & development ; Signaling ; TAK1 protein ; Yersinia - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-8</ispartof><rights>Copyright National Academy of Sciences Jun 22, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</citedby><cites>FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</cites><orcidid>0000-0003-3653-0567 ; 0000-0002-5584-0176 ; 0000-0002-5307-2222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27041097$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27041097$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34161265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Pérez, Wilfred</creatorcontrib><creatorcontrib>Sai, Kazuhito</creatorcontrib><creatorcontrib>Sakamachi, Yosuke</creatorcontrib><creatorcontrib>Parsons, Cameron</creatorcontrib><creatorcontrib>Kathariou, Sophia</creatorcontrib><creatorcontrib>Ninomiya-Tsuji, Jun</creatorcontrib><title>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.</description><subject>Ablation</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - growth & development</subject><subject>Biological Sciences</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-8</subject><subject>Cell death</subject><subject>Colonization</subject><subject>Colony Count, Microbial</subject><subject>Gene deletion</subject><subject>Hydrogen Sulfide - pharmacology</subject><subject>Inflammation</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Intracellular Space - microbiology</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>MAP Kinase Kinase Kinases - antagonists & inhibitors</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Pathogens</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Salmonella - drug effects</subject><subject>Salmonella - growth & development</subject><subject>Signaling</subject><subject>TAK1 protein</subject><subject>Yersinia - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtP3DAURq2qqAyUdVetInXDJnD9jLOphFBfAgkJqFhajuN0PPXEU9upVH59HQamtCsv7rmf76eD0BsMJxgaeroZdTohQKhgDcbyBVpgaHEtWAsv0QKANLVkhO2jg5RWANByCa_QPmVYYCL4At3dnl3gyo1L17nswlhZ74zLqVq7HMwyjH102lfXVzdVDlXng_lR6By1sd5PXseq0ybbB8gEH0Z3r-ec12hv0D7Zo8f3EH379PH2_Et9efX56_nZZW0Yo7nuLHCuKQxsMJxqbHusNaGNoX3Pe94JGIZOiAEDaU3BtB0IByG7skSb3tBD9GGbu5m6te2NnW_zahPdWsffKmin_p2Mbqm-h19Kll94y0rA8WNADD8nm7JauzSX06MNU1KEMyYlbtmMvv8PXYUpjqXeTAlMJZFtoU63lIkhpWiH3TEY1CxNzdLUX2ll493zDjv-yVIB3m6BVcoh7uakAVZ0N_QPRNSelw</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>López-Pérez, Wilfred</creator><creator>Sai, Kazuhito</creator><creator>Sakamachi, Yosuke</creator><creator>Parsons, Cameron</creator><creator>Kathariou, Sophia</creator><creator>Ninomiya-Tsuji, Jun</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3653-0567</orcidid><orcidid>https://orcid.org/0000-0002-5584-0176</orcidid><orcidid>https://orcid.org/0000-0002-5307-2222</orcidid></search><sort><creationdate>20210622</creationdate><title>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</title><author>López-Pérez, Wilfred ; Sai, Kazuhito ; Sakamachi, Yosuke ; Parsons, Cameron ; Kathariou, Sophia ; Ninomiya-Tsuji, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-be055a30f4fc53a1ed1aa237c3dd5d5b60ffb66f1029c30faef25068b5a337dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - growth & development</topic><topic>Biological Sciences</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-8</topic><topic>Cell death</topic><topic>Colonization</topic><topic>Colony Count, Microbial</topic><topic>Gene deletion</topic><topic>Hydrogen Sulfide - pharmacology</topic><topic>Inflammation</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Intracellular Space - microbiology</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>MAP Kinase Kinase Kinases - antagonists & inhibitors</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Pathogens</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Salmonella - drug effects</topic><topic>Salmonella - growth & development</topic><topic>Signaling</topic><topic>TAK1 protein</topic><topic>Yersinia - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Pérez, Wilfred</creatorcontrib><creatorcontrib>Sai, Kazuhito</creatorcontrib><creatorcontrib>Sakamachi, Yosuke</creatorcontrib><creatorcontrib>Parsons, Cameron</creatorcontrib><creatorcontrib>Kathariou, Sophia</creatorcontrib><creatorcontrib>Ninomiya-Tsuji, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Pérez, Wilfred</au><au>Sai, Kazuhito</au><au>Sakamachi, Yosuke</au><au>Parsons, Cameron</au><au>Kathariou, Sophia</au><au>Ninomiya-Tsuji, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>118</volume><issue>25</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition–induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia’s outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death–signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition–induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34161265</pmid><doi>10.1073/pnas.2023647118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3653-0567</orcidid><orcidid>https://orcid.org/0000-0002-5584-0176</orcidid><orcidid>https://orcid.org/0000-0002-5307-2222</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (25), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237594 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ablation Animals Bacteria Bacteria - growth & development Biological Sciences Caspase 3 - metabolism Caspase-8 Cell death Colonization Colony Count, Microbial Gene deletion Hydrogen Sulfide - pharmacology Inflammation Intracellular Intracellular signalling Intracellular Space - microbiology Kinases MAP kinase MAP Kinase Kinase Kinases - antagonists & inhibitors MAP Kinase Kinase Kinases - metabolism Membrane proteins Mice Mitochondria Mitochondria - metabolism Pathogens Protein kinase Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Receptor-Interacting Protein Serine-Threonine Kinases - metabolism Salmonella - drug effects Salmonella - growth & development Signaling TAK1 protein Yersinia - drug effects |
title | TAK1 inhibition elicits mitochondrial ROS to block intracellular bacterial colonization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAK1%20inhibition%20elicits%20mitochondrial%20ROS%20to%20block%20intracellular%20bacterial%20colonization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=L%C3%B3pez-P%C3%A9rez,%20Wilfred&rft.date=2021-06-22&rft.volume=118&rft.issue=25&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023647118&rft_dat=%3Cjstor_pubme%3E27041097%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546138289&rft_id=info:pmid/34161265&rft_jstor_id=27041097&rfr_iscdi=true |