Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity
Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID‐19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for intera...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-06, Vol.17 (25), p.e2101483-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | e2101483 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Unal, Mehmet Altay Bayrakdar, Fatma Nazir, Hasan Besbinar, Omur Gurcan, Cansu Lozano, Neus Arellano, Luis M. Yalcin, Süleyman Panatli, Oguzhan Celik, Dogantan Alkaya, Damla Agan, Aydan Fusco, Laura Suzuk Yildiz, Serap Delogu, Lucia Gemma Akcali, Kamil Can Kostarelos, Kostas Yilmazer, Açelya |
description | Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID‐19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS‐CoV‐2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS‐CoV‐2 viral spike (open state – 6VYB or closed state – 6VXX), ACE2 (1R42), and the ACE2‐bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological‐grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS‐CoV‐2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID‐19.
Detailed in silico and in vitro tools are applied to show that graphene oxide is able to interact effectively with the SARS‐CoV‐2 surface proteins and receptors leading to an infection inhibitory action. Four viral clades are used to determine inhibition of viral infection following mutations in the viral proteins. |
doi_str_mv | 10.1002/smll.202101483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8236978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544384684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4963-ec14d07ffd5b692f043c257bfbeb697b47040615ba59ee4f6dcd71858ed092093</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkeIil5gyxJZYsMmqW8zY2-QqghKpdCiBthaHs8x42oyTm1PS1blEXhGngSnKeGyYePjI3_nP_71F8VzgqcEY3ocl30_pZgSTLhgj4oDUhE2qQSVj3d3gveLwxivMGaE8vpJsc-YFEJidlDcnQa96mAAdPHVtYDO9eBjB5AiOhsSBG0S0kO7bSwEQLcudWhxcrn48e37zH_OJ0WLMVhtAH0IPoEb4v3IDPoeXYKBVfIhouSzSOcal3K1YJK7cWn9tNizuo_w7KEeFZ_evvk4ezeZX5yezU7mE8NlxSZgCG9xbW1bNpWkFnNmaFk3toHc1w2vMccVKRtdSgBuq9a0NRGlgBZLiiU7Kl5vdVdjs4TWwJCC7tUquKUOa-W1U3-_DK5TX_yNEpTlBSILvHoQCP56hJjU0kWTLeoB_BgVLakgAlPJM_ryH_TKj2HI9jLFORO8EhtquqVM8DEGsLvPEKw22apNtmqXbR548aeFHf4rzAzILXDrelj_R04t3s_nv8V_Akt9tFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544384684</pqid></control><display><type>article</type><title>Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity</title><source>Wiley Online Library All Journals</source><creator>Unal, Mehmet Altay ; Bayrakdar, Fatma ; Nazir, Hasan ; Besbinar, Omur ; Gurcan, Cansu ; Lozano, Neus ; Arellano, Luis M. ; Yalcin, Süleyman ; Panatli, Oguzhan ; Celik, Dogantan ; Alkaya, Damla ; Agan, Aydan ; Fusco, Laura ; Suzuk Yildiz, Serap ; Delogu, Lucia Gemma ; Akcali, Kamil Can ; Kostarelos, Kostas ; Yilmazer, Açelya</creator><creatorcontrib>Unal, Mehmet Altay ; Bayrakdar, Fatma ; Nazir, Hasan ; Besbinar, Omur ; Gurcan, Cansu ; Lozano, Neus ; Arellano, Luis M. ; Yalcin, Süleyman ; Panatli, Oguzhan ; Celik, Dogantan ; Alkaya, Damla ; Agan, Aydan ; Fusco, Laura ; Suzuk Yildiz, Serap ; Delogu, Lucia Gemma ; Akcali, Kamil Can ; Kostarelos, Kostas ; Yilmazer, Açelya</creatorcontrib><description>Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID‐19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS‐CoV‐2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS‐CoV‐2 viral spike (open state – 6VYB or closed state – 6VXX), ACE2 (1R42), and the ACE2‐bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological‐grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS‐CoV‐2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID‐19.
Detailed in silico and in vitro tools are applied to show that graphene oxide is able to interact effectively with the SARS‐CoV‐2 surface proteins and receptors leading to an infection inhibitory action. Four viral clades are used to determine inhibition of viral infection following mutations in the viral proteins.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202101483</identifier><identifier>PMID: 33988903</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; antiviral therapeutics ; Biomedical materials ; Bonding strength ; COVID-19 ; Graphene ; in silico ; in vitro ; Molecular docking ; Mutation ; Nanomaterials ; Nanosheets ; Nanotechnology ; Severe acute respiratory syndrome coronavirus 2 ; Sheets ; Spikes ; Viral diseases ; viral mutations</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-06, Vol.17 (25), p.e2101483-n/a</ispartof><rights>2021 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4963-ec14d07ffd5b692f043c257bfbeb697b47040615ba59ee4f6dcd71858ed092093</citedby><cites>FETCH-LOGICAL-c4963-ec14d07ffd5b692f043c257bfbeb697b47040615ba59ee4f6dcd71858ed092093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202101483$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202101483$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33988903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unal, Mehmet Altay</creatorcontrib><creatorcontrib>Bayrakdar, Fatma</creatorcontrib><creatorcontrib>Nazir, Hasan</creatorcontrib><creatorcontrib>Besbinar, Omur</creatorcontrib><creatorcontrib>Gurcan, Cansu</creatorcontrib><creatorcontrib>Lozano, Neus</creatorcontrib><creatorcontrib>Arellano, Luis M.</creatorcontrib><creatorcontrib>Yalcin, Süleyman</creatorcontrib><creatorcontrib>Panatli, Oguzhan</creatorcontrib><creatorcontrib>Celik, Dogantan</creatorcontrib><creatorcontrib>Alkaya, Damla</creatorcontrib><creatorcontrib>Agan, Aydan</creatorcontrib><creatorcontrib>Fusco, Laura</creatorcontrib><creatorcontrib>Suzuk Yildiz, Serap</creatorcontrib><creatorcontrib>Delogu, Lucia Gemma</creatorcontrib><creatorcontrib>Akcali, Kamil Can</creatorcontrib><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Yilmazer, Açelya</creatorcontrib><title>Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID‐19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS‐CoV‐2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS‐CoV‐2 viral spike (open state – 6VYB or closed state – 6VXX), ACE2 (1R42), and the ACE2‐bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological‐grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS‐CoV‐2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID‐19.
Detailed in silico and in vitro tools are applied to show that graphene oxide is able to interact effectively with the SARS‐CoV‐2 surface proteins and receptors leading to an infection inhibitory action. Four viral clades are used to determine inhibition of viral infection following mutations in the viral proteins.</description><subject>Affinity</subject><subject>antiviral therapeutics</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>COVID-19</subject><subject>Graphene</subject><subject>in silico</subject><subject>in vitro</subject><subject>Molecular docking</subject><subject>Mutation</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Sheets</subject><subject>Spikes</subject><subject>Viral diseases</subject><subject>viral mutations</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctuEzEUhkeIil5gyxJZYsMmqW8zY2-QqghKpdCiBthaHs8x42oyTm1PS1blEXhGngSnKeGyYePjI3_nP_71F8VzgqcEY3ocl30_pZgSTLhgj4oDUhE2qQSVj3d3gveLwxivMGaE8vpJsc-YFEJidlDcnQa96mAAdPHVtYDO9eBjB5AiOhsSBG0S0kO7bSwEQLcudWhxcrn48e37zH_OJ0WLMVhtAH0IPoEb4v3IDPoeXYKBVfIhouSzSOcal3K1YJK7cWn9tNizuo_w7KEeFZ_evvk4ezeZX5yezU7mE8NlxSZgCG9xbW1bNpWkFnNmaFk3toHc1w2vMccVKRtdSgBuq9a0NRGlgBZLiiU7Kl5vdVdjs4TWwJCC7tUquKUOa-W1U3-_DK5TX_yNEpTlBSILvHoQCP56hJjU0kWTLeoB_BgVLakgAlPJM_ryH_TKj2HI9jLFORO8EhtquqVM8DEGsLvPEKw22apNtmqXbR548aeFHf4rzAzILXDrelj_R04t3s_nv8V_Akt9tFI</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Unal, Mehmet Altay</creator><creator>Bayrakdar, Fatma</creator><creator>Nazir, Hasan</creator><creator>Besbinar, Omur</creator><creator>Gurcan, Cansu</creator><creator>Lozano, Neus</creator><creator>Arellano, Luis M.</creator><creator>Yalcin, Süleyman</creator><creator>Panatli, Oguzhan</creator><creator>Celik, Dogantan</creator><creator>Alkaya, Damla</creator><creator>Agan, Aydan</creator><creator>Fusco, Laura</creator><creator>Suzuk Yildiz, Serap</creator><creator>Delogu, Lucia Gemma</creator><creator>Akcali, Kamil Can</creator><creator>Kostarelos, Kostas</creator><creator>Yilmazer, Açelya</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210601</creationdate><title>Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity</title><author>Unal, Mehmet Altay ; Bayrakdar, Fatma ; Nazir, Hasan ; Besbinar, Omur ; Gurcan, Cansu ; Lozano, Neus ; Arellano, Luis M. ; Yalcin, Süleyman ; Panatli, Oguzhan ; Celik, Dogantan ; Alkaya, Damla ; Agan, Aydan ; Fusco, Laura ; Suzuk Yildiz, Serap ; Delogu, Lucia Gemma ; Akcali, Kamil Can ; Kostarelos, Kostas ; Yilmazer, Açelya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4963-ec14d07ffd5b692f043c257bfbeb697b47040615ba59ee4f6dcd71858ed092093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>antiviral therapeutics</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>COVID-19</topic><topic>Graphene</topic><topic>in silico</topic><topic>in vitro</topic><topic>Molecular docking</topic><topic>Mutation</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Sheets</topic><topic>Spikes</topic><topic>Viral diseases</topic><topic>viral mutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unal, Mehmet Altay</creatorcontrib><creatorcontrib>Bayrakdar, Fatma</creatorcontrib><creatorcontrib>Nazir, Hasan</creatorcontrib><creatorcontrib>Besbinar, Omur</creatorcontrib><creatorcontrib>Gurcan, Cansu</creatorcontrib><creatorcontrib>Lozano, Neus</creatorcontrib><creatorcontrib>Arellano, Luis M.</creatorcontrib><creatorcontrib>Yalcin, Süleyman</creatorcontrib><creatorcontrib>Panatli, Oguzhan</creatorcontrib><creatorcontrib>Celik, Dogantan</creatorcontrib><creatorcontrib>Alkaya, Damla</creatorcontrib><creatorcontrib>Agan, Aydan</creatorcontrib><creatorcontrib>Fusco, Laura</creatorcontrib><creatorcontrib>Suzuk Yildiz, Serap</creatorcontrib><creatorcontrib>Delogu, Lucia Gemma</creatorcontrib><creatorcontrib>Akcali, Kamil Can</creatorcontrib><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Yilmazer, Açelya</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unal, Mehmet Altay</au><au>Bayrakdar, Fatma</au><au>Nazir, Hasan</au><au>Besbinar, Omur</au><au>Gurcan, Cansu</au><au>Lozano, Neus</au><au>Arellano, Luis M.</au><au>Yalcin, Süleyman</au><au>Panatli, Oguzhan</au><au>Celik, Dogantan</au><au>Alkaya, Damla</au><au>Agan, Aydan</au><au>Fusco, Laura</au><au>Suzuk Yildiz, Serap</au><au>Delogu, Lucia Gemma</au><au>Akcali, Kamil Can</au><au>Kostarelos, Kostas</au><au>Yilmazer, Açelya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>17</volume><issue>25</issue><spage>e2101483</spage><epage>n/a</epage><pages>e2101483-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID‐19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS‐CoV‐2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS‐CoV‐2 viral spike (open state – 6VYB or closed state – 6VXX), ACE2 (1R42), and the ACE2‐bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological‐grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS‐CoV‐2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID‐19.
Detailed in silico and in vitro tools are applied to show that graphene oxide is able to interact effectively with the SARS‐CoV‐2 surface proteins and receptors leading to an infection inhibitory action. Four viral clades are used to determine inhibition of viral infection following mutations in the viral proteins.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33988903</pmid><doi>10.1002/smll.202101483</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-06, Vol.17 (25), p.e2101483-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8236978 |
source | Wiley Online Library All Journals |
subjects | Affinity antiviral therapeutics Biomedical materials Bonding strength COVID-19 Graphene in silico in vitro Molecular docking Mutation Nanomaterials Nanosheets Nanotechnology Severe acute respiratory syndrome coronavirus 2 Sheets Spikes Viral diseases viral mutations |
title | Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%20Nanosheets%20Interact%20and%20Interfere%20with%20SARS%E2%80%90CoV%E2%80%902%20Surface%20Proteins%20and%20Cell%20Receptors%20to%20Inhibit%20Infectivity&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Unal,%20Mehmet%20Altay&rft.date=2021-06-01&rft.volume=17&rft.issue=25&rft.spage=e2101483&rft.epage=n/a&rft.pages=e2101483-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202101483&rft_dat=%3Cproquest_pubme%3E2544384684%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544384684&rft_id=info:pmid/33988903&rfr_iscdi=true |