Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons

A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-06, Vol.22 (12), p.6575
Hauptverfasser: Wong Fong Sang, I Emeline, Schroer, Jonas, Halbhuber, Lisa, Warm, Davide, Yang, Jenq-Wei, Luhmann, Heiko J, Kilb, Werner, Sinning, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 6575
container_title International journal of molecular sciences
container_volume 22
creator Wong Fong Sang, I Emeline
Schroer, Jonas
Halbhuber, Lisa
Warm, Davide
Yang, Jenq-Wei
Luhmann, Heiko J
Kilb, Werner
Sinning, Anne
description A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single neurons in the absence of synaptic inputs while maintaining stable overall activity levels. Replacing the burst firing pattern with a non-physiological, single pulse pattern significantly increased cell death rates as compared to physiological burst stimulation. Furthermore, physiological burst stimulation led to an elevated peak in intracellular calcium and an increase in the expression level of classical activity-dependent targets but also decreased Bax/BCL-2 expression ratio and reduced caspase 3/7 activity. In summary, these results demonstrate at the single-cell level that the temporal pattern of action potentials is critical for neuronal survival versus cell death fate during cortical development, besides the pro-survival effect of action potential firing per se.
doi_str_mv 10.3390/ijms22126575
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548395869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7247141ac53069a5822270f1a01ae242d8e7d2b6317b9b724fe49a10f101fd743</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMozkN3rqXAjYtpTW6SSmUjDO0TBkd8rEO66labJpW0Saqg_70ZZxxaV_fA-TjcwyHkGaOvONf0tdtNGYBBK5V8QE6ZAFhR2qqHR_qEnOW8oxQ4SP2YnHABVAJXp2S83pe4xYDF9db7Q7OOoaToPQ7NZV_c4sqh-WJLwRSat1jP5ALm5tucFrdY33y1BZs4Vm9BH_cubJvPGPuY_gRWPacY8hPyaLQ-49O7e05-vH_3ff1xdXX94dP68mrVCwZlpUAoJpjtJaettrIDAEVHZimzCAKGDtUAm5YztdGbSo8otGWVoGwclODn5M1t7n7eTDj0WMtYb_bJTTYdTLTO_OsE99Ns42I64JJqqAEv7wJS_DVjLmZyuUfvbcA4ZwNSdFzLrtUVffEfuotzCrXeDSV0J6milbq4pfoUc0443j_DqLkZ0BwPWPHnxwXu4b-L8d9C9Zf9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544985070</pqid></control><display><type>article</type><title>Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wong Fong Sang, I Emeline ; Schroer, Jonas ; Halbhuber, Lisa ; Warm, Davide ; Yang, Jenq-Wei ; Luhmann, Heiko J ; Kilb, Werner ; Sinning, Anne</creator><creatorcontrib>Wong Fong Sang, I Emeline ; Schroer, Jonas ; Halbhuber, Lisa ; Warm, Davide ; Yang, Jenq-Wei ; Luhmann, Heiko J ; Kilb, Werner ; Sinning, Anne</creatorcontrib><description>A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single neurons in the absence of synaptic inputs while maintaining stable overall activity levels. Replacing the burst firing pattern with a non-physiological, single pulse pattern significantly increased cell death rates as compared to physiological burst stimulation. Furthermore, physiological burst stimulation led to an elevated peak in intracellular calcium and an increase in the expression level of classical activity-dependent targets but also decreased Bax/BCL-2 expression ratio and reduced caspase 3/7 activity. In summary, these results demonstrate at the single-cell level that the temporal pattern of action potentials is critical for neuronal survival versus cell death fate during cortical development, besides the pro-survival effect of action potential firing per se.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22126575</identifier><identifier>PMID: 34205237</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Action potential ; Action Potentials ; Activity patterns ; Animals ; Apoptosis ; Bcl-2 protein ; Calcium (intracellular) ; Caspase-3 ; Cell death ; Cells, Cultured ; Experiments ; Firing pattern ; Gene expression ; Luminescent Proteins ; Mice ; Morphology ; Neocortex - cytology ; Neurons ; Neurons - physiology ; Optogenetics ; Patch-Clamp Techniques ; Physiology ; Red Fluorescent Protein ; Stimulation ; Survival</subject><ispartof>International journal of molecular sciences, 2021-06, Vol.22 (12), p.6575</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7247141ac53069a5822270f1a01ae242d8e7d2b6317b9b724fe49a10f101fd743</citedby><cites>FETCH-LOGICAL-c412t-7247141ac53069a5822270f1a01ae242d8e7d2b6317b9b724fe49a10f101fd743</cites><orcidid>0000-0002-7934-8661 ; 0000-0001-8204-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235092/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235092/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34205237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong Fong Sang, I Emeline</creatorcontrib><creatorcontrib>Schroer, Jonas</creatorcontrib><creatorcontrib>Halbhuber, Lisa</creatorcontrib><creatorcontrib>Warm, Davide</creatorcontrib><creatorcontrib>Yang, Jenq-Wei</creatorcontrib><creatorcontrib>Luhmann, Heiko J</creatorcontrib><creatorcontrib>Kilb, Werner</creatorcontrib><creatorcontrib>Sinning, Anne</creatorcontrib><title>Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single neurons in the absence of synaptic inputs while maintaining stable overall activity levels. Replacing the burst firing pattern with a non-physiological, single pulse pattern significantly increased cell death rates as compared to physiological burst stimulation. Furthermore, physiological burst stimulation led to an elevated peak in intracellular calcium and an increase in the expression level of classical activity-dependent targets but also decreased Bax/BCL-2 expression ratio and reduced caspase 3/7 activity. In summary, these results demonstrate at the single-cell level that the temporal pattern of action potentials is critical for neuronal survival versus cell death fate during cortical development, besides the pro-survival effect of action potential firing per se.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Activity patterns</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bcl-2 protein</subject><subject>Calcium (intracellular)</subject><subject>Caspase-3</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Experiments</subject><subject>Firing pattern</subject><subject>Gene expression</subject><subject>Luminescent Proteins</subject><subject>Mice</subject><subject>Morphology</subject><subject>Neocortex - cytology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Patch-Clamp Techniques</subject><subject>Physiology</subject><subject>Red Fluorescent Protein</subject><subject>Stimulation</subject><subject>Survival</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUuLFDEUhYMozkN3rqXAjYtpTW6SSmUjDO0TBkd8rEO66labJpW0Saqg_70ZZxxaV_fA-TjcwyHkGaOvONf0tdtNGYBBK5V8QE6ZAFhR2qqHR_qEnOW8oxQ4SP2YnHABVAJXp2S83pe4xYDF9db7Q7OOoaToPQ7NZV_c4sqh-WJLwRSat1jP5ALm5tucFrdY33y1BZs4Vm9BH_cubJvPGPuY_gRWPacY8hPyaLQ-49O7e05-vH_3ff1xdXX94dP68mrVCwZlpUAoJpjtJaettrIDAEVHZimzCAKGDtUAm5YztdGbSo8otGWVoGwclODn5M1t7n7eTDj0WMtYb_bJTTYdTLTO_OsE99Ns42I64JJqqAEv7wJS_DVjLmZyuUfvbcA4ZwNSdFzLrtUVffEfuotzCrXeDSV0J6milbq4pfoUc0443j_DqLkZ0BwPWPHnxwXu4b-L8d9C9Zf9</recordid><startdate>20210619</startdate><enddate>20210619</enddate><creator>Wong Fong Sang, I Emeline</creator><creator>Schroer, Jonas</creator><creator>Halbhuber, Lisa</creator><creator>Warm, Davide</creator><creator>Yang, Jenq-Wei</creator><creator>Luhmann, Heiko J</creator><creator>Kilb, Werner</creator><creator>Sinning, Anne</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7934-8661</orcidid><orcidid>https://orcid.org/0000-0001-8204-3984</orcidid></search><sort><creationdate>20210619</creationdate><title>Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons</title><author>Wong Fong Sang, I Emeline ; Schroer, Jonas ; Halbhuber, Lisa ; Warm, Davide ; Yang, Jenq-Wei ; Luhmann, Heiko J ; Kilb, Werner ; Sinning, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7247141ac53069a5822270f1a01ae242d8e7d2b6317b9b724fe49a10f101fd743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Activity patterns</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bcl-2 protein</topic><topic>Calcium (intracellular)</topic><topic>Caspase-3</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Experiments</topic><topic>Firing pattern</topic><topic>Gene expression</topic><topic>Luminescent Proteins</topic><topic>Mice</topic><topic>Morphology</topic><topic>Neocortex - cytology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Patch-Clamp Techniques</topic><topic>Physiology</topic><topic>Red Fluorescent Protein</topic><topic>Stimulation</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong Fong Sang, I Emeline</creatorcontrib><creatorcontrib>Schroer, Jonas</creatorcontrib><creatorcontrib>Halbhuber, Lisa</creatorcontrib><creatorcontrib>Warm, Davide</creatorcontrib><creatorcontrib>Yang, Jenq-Wei</creatorcontrib><creatorcontrib>Luhmann, Heiko J</creatorcontrib><creatorcontrib>Kilb, Werner</creatorcontrib><creatorcontrib>Sinning, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong Fong Sang, I Emeline</au><au>Schroer, Jonas</au><au>Halbhuber, Lisa</au><au>Warm, Davide</au><au>Yang, Jenq-Wei</au><au>Luhmann, Heiko J</au><au>Kilb, Werner</au><au>Sinning, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-06-19</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>6575</spage><pages>6575-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single neurons in the absence of synaptic inputs while maintaining stable overall activity levels. Replacing the burst firing pattern with a non-physiological, single pulse pattern significantly increased cell death rates as compared to physiological burst stimulation. Furthermore, physiological burst stimulation led to an elevated peak in intracellular calcium and an increase in the expression level of classical activity-dependent targets but also decreased Bax/BCL-2 expression ratio and reduced caspase 3/7 activity. In summary, these results demonstrate at the single-cell level that the temporal pattern of action potentials is critical for neuronal survival versus cell death fate during cortical development, besides the pro-survival effect of action potential firing per se.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34205237</pmid><doi>10.3390/ijms22126575</doi><orcidid>https://orcid.org/0000-0002-7934-8661</orcidid><orcidid>https://orcid.org/0000-0001-8204-3984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-06, Vol.22 (12), p.6575
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235092
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action potential
Action Potentials
Activity patterns
Animals
Apoptosis
Bcl-2 protein
Calcium (intracellular)
Caspase-3
Cell death
Cells, Cultured
Experiments
Firing pattern
Gene expression
Luminescent Proteins
Mice
Morphology
Neocortex - cytology
Neurons
Neurons - physiology
Optogenetics
Patch-Clamp Techniques
Physiology
Red Fluorescent Protein
Stimulation
Survival
title Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optogenetically%20Controlled%20Activity%20Pattern%20Determines%20Survival%20Rate%20of%20Developing%20Neocortical%20Neurons&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Wong%20Fong%20Sang,%20I%20Emeline&rft.date=2021-06-19&rft.volume=22&rft.issue=12&rft.spage=6575&rft.pages=6575-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22126575&rft_dat=%3Cproquest_pubme%3E2548395869%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544985070&rft_id=info:pmid/34205237&rfr_iscdi=true