Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study

Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2021-06, Vol.13 (12), p.3098
Hauptverfasser: Yan, Ye, Shao, Lizhi, Liu, Zhenyu, He, Wei, Yang, Guanyu, Liu, Jiangang, Xia, Haizhui, Zhang, Yuting, Chen, Huiying, Liu, Cheng, Lu, Min, Ma, Lulin, Sun, Kai, Zhou, Xuezhi, Ye, Xiongjun, Wang, Lei, Tian, Jie, Lu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 3098
container_title Cancers
container_volume 13
creator Yan, Ye
Shao, Lizhi
Liu, Zhenyu
He, Wei
Yang, Guanyu
Liu, Jiangang
Xia, Haizhui
Zhang, Yuting
Chen, Huiying
Liu, Cheng
Lu, Min
Ma, Lulin
Sun, Kai
Zhou, Xuezhi
Ye, Xiongjun
Wang, Lei
Tian, Jie
Lu, Jian
description Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize treatment. We retrospectively enrolled 485 patients underwent RP from 2010 to 2017 in three institutions. Quantitative and interpretable features were extracted from T2 delineated tumors. Deep learning-based survival analysis was then applied to develop the deep-radiomic signature (DRS-BCR). The model’s performance was further evaluated, in comparison with conventional clinical models. The model achieved C-index of 0.802 in both primary and validating cohorts, outweighed the CAPRA-S score (0.677), NCCN model (0.586) and Gleason grade group systems (0.583). With application analysis, DRS-BCR model can significantly reduce false-positive predictions, so that nearly one-third of patients could benefit from the model by avoiding overtreatments. The deep learning-based survival analysis assisted quantitative image features from MRI performed well in prediction for BCR and has significant potential in optimizing systemic neoadjuvant or adjuvant therapies for prostate cancer patients.
doi_str_mv 10.3390/cancers13123098
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548397259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-55d64b89c9ed384d760c1e0d40dd88420fa62018c481b7a20caaec74c90058ea3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEolXpmaslLlxCHdtJbA5IZaFQaStKgXM0a8_uukrsrT-K9o_099ahFYLOxSPPM-98VdXrhr7jXNETDU5jiA1vGKdKPqsOGe1Z3XVKPP_HP6iOY7ymxThv-q5_WR1wwWjby-6wuvuEuCNLhOCs25DfNm3J9wwu2QTJ3iI5Q0g5YCR-TS5g4zBZTa4wejdXJ-cTbEoweXIZ0FidyEfr9RYnq2EsnM4h4AyW9Cswf34vg49FHXXy0_49OSUXeUy2XqBLGMiPlM3-VfViDWPE48f3qPp19vnn4mu9_PblfHG6rDVXMtVtazqxkkorNFwK03dUN0iNoMZIWYZcQ8doI7WQzaoHRjUA6l5oRWkrEfhR9eFBd5dXExpdWggwDrtgJwj7wYMd_o84ux02_naQjIuWqyLw9lEg-JuMMQ2TjRrHERz6HAfWCslVz9oZffMEvfY5uDLeTAnVSi5poU4eKF22FAOu_zbT0GE--_Dk7PweEEqisw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544958380</pqid></control><display><type>article</type><title>Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Yan, Ye ; Shao, Lizhi ; Liu, Zhenyu ; He, Wei ; Yang, Guanyu ; Liu, Jiangang ; Xia, Haizhui ; Zhang, Yuting ; Chen, Huiying ; Liu, Cheng ; Lu, Min ; Ma, Lulin ; Sun, Kai ; Zhou, Xuezhi ; Ye, Xiongjun ; Wang, Lei ; Tian, Jie ; Lu, Jian</creator><creatorcontrib>Yan, Ye ; Shao, Lizhi ; Liu, Zhenyu ; He, Wei ; Yang, Guanyu ; Liu, Jiangang ; Xia, Haizhui ; Zhang, Yuting ; Chen, Huiying ; Liu, Cheng ; Lu, Min ; Ma, Lulin ; Sun, Kai ; Zhou, Xuezhi ; Ye, Xiongjun ; Wang, Lei ; Tian, Jie ; Lu, Jian</creatorcontrib><description>Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize treatment. We retrospectively enrolled 485 patients underwent RP from 2010 to 2017 in three institutions. Quantitative and interpretable features were extracted from T2 delineated tumors. Deep learning-based survival analysis was then applied to develop the deep-radiomic signature (DRS-BCR). The model’s performance was further evaluated, in comparison with conventional clinical models. The model achieved C-index of 0.802 in both primary and validating cohorts, outweighed the CAPRA-S score (0.677), NCCN model (0.586) and Gleason grade group systems (0.583). With application analysis, DRS-BCR model can significantly reduce false-positive predictions, so that nearly one-third of patients could benefit from the model by avoiding overtreatments. The deep learning-based survival analysis assisted quantitative image features from MRI performed well in prediction for BCR and has significant potential in optimizing systemic neoadjuvant or adjuvant therapies for prostate cancer patients.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13123098</identifier><identifier>PMID: 34205786</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biopsy ; Deep learning ; Hospitals ; Image processing ; Magnetic resonance imaging ; Medical prognosis ; Metastasis ; Neural networks ; Pathology ; Patients ; Performance evaluation ; Prediction models ; Prostate cancer ; Prostatectomy ; Radiomics ; Software ; Surgery ; Survival ; Survival analysis ; Tumors</subject><ispartof>Cancers, 2021-06, Vol.13 (12), p.3098</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-55d64b89c9ed384d760c1e0d40dd88420fa62018c481b7a20caaec74c90058ea3</citedby><cites>FETCH-LOGICAL-c398t-55d64b89c9ed384d760c1e0d40dd88420fa62018c481b7a20caaec74c90058ea3</cites><orcidid>0000-0003-0847-561X ; 0000-0001-7559-8519 ; 0000-0002-9144-7486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234539/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234539/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Yan, Ye</creatorcontrib><creatorcontrib>Shao, Lizhi</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Yang, Guanyu</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Xia, Haizhui</creatorcontrib><creatorcontrib>Zhang, Yuting</creatorcontrib><creatorcontrib>Chen, Huiying</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Lu, Min</creatorcontrib><creatorcontrib>Ma, Lulin</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Zhou, Xuezhi</creatorcontrib><creatorcontrib>Ye, Xiongjun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><title>Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study</title><title>Cancers</title><description>Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize treatment. We retrospectively enrolled 485 patients underwent RP from 2010 to 2017 in three institutions. Quantitative and interpretable features were extracted from T2 delineated tumors. Deep learning-based survival analysis was then applied to develop the deep-radiomic signature (DRS-BCR). The model’s performance was further evaluated, in comparison with conventional clinical models. The model achieved C-index of 0.802 in both primary and validating cohorts, outweighed the CAPRA-S score (0.677), NCCN model (0.586) and Gleason grade group systems (0.583). With application analysis, DRS-BCR model can significantly reduce false-positive predictions, so that nearly one-third of patients could benefit from the model by avoiding overtreatments. The deep learning-based survival analysis assisted quantitative image features from MRI performed well in prediction for BCR and has significant potential in optimizing systemic neoadjuvant or adjuvant therapies for prostate cancer patients.</description><subject>Biopsy</subject><subject>Deep learning</subject><subject>Hospitals</subject><subject>Image processing</subject><subject>Magnetic resonance imaging</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>Radiomics</subject><subject>Software</subject><subject>Surgery</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1v1DAQhiMEolXpmaslLlxCHdtJbA5IZaFQaStKgXM0a8_uukrsrT-K9o_099ahFYLOxSPPM-98VdXrhr7jXNETDU5jiA1vGKdKPqsOGe1Z3XVKPP_HP6iOY7ymxThv-q5_WR1wwWjby-6wuvuEuCNLhOCs25DfNm3J9wwu2QTJ3iI5Q0g5YCR-TS5g4zBZTa4wejdXJ-cTbEoweXIZ0FidyEfr9RYnq2EsnM4h4AyW9Cswf34vg49FHXXy0_49OSUXeUy2XqBLGMiPlM3-VfViDWPE48f3qPp19vnn4mu9_PblfHG6rDVXMtVtazqxkkorNFwK03dUN0iNoMZIWYZcQ8doI7WQzaoHRjUA6l5oRWkrEfhR9eFBd5dXExpdWggwDrtgJwj7wYMd_o84ux02_naQjIuWqyLw9lEg-JuMMQ2TjRrHERz6HAfWCslVz9oZffMEvfY5uDLeTAnVSi5poU4eKF22FAOu_zbT0GE--_Dk7PweEEqisw</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Yan, Ye</creator><creator>Shao, Lizhi</creator><creator>Liu, Zhenyu</creator><creator>He, Wei</creator><creator>Yang, Guanyu</creator><creator>Liu, Jiangang</creator><creator>Xia, Haizhui</creator><creator>Zhang, Yuting</creator><creator>Chen, Huiying</creator><creator>Liu, Cheng</creator><creator>Lu, Min</creator><creator>Ma, Lulin</creator><creator>Sun, Kai</creator><creator>Zhou, Xuezhi</creator><creator>Ye, Xiongjun</creator><creator>Wang, Lei</creator><creator>Tian, Jie</creator><creator>Lu, Jian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0847-561X</orcidid><orcidid>https://orcid.org/0000-0001-7559-8519</orcidid><orcidid>https://orcid.org/0000-0002-9144-7486</orcidid></search><sort><creationdate>20210621</creationdate><title>Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study</title><author>Yan, Ye ; Shao, Lizhi ; Liu, Zhenyu ; He, Wei ; Yang, Guanyu ; Liu, Jiangang ; Xia, Haizhui ; Zhang, Yuting ; Chen, Huiying ; Liu, Cheng ; Lu, Min ; Ma, Lulin ; Sun, Kai ; Zhou, Xuezhi ; Ye, Xiongjun ; Wang, Lei ; Tian, Jie ; Lu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-55d64b89c9ed384d760c1e0d40dd88420fa62018c481b7a20caaec74c90058ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biopsy</topic><topic>Deep learning</topic><topic>Hospitals</topic><topic>Image processing</topic><topic>Magnetic resonance imaging</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>Radiomics</topic><topic>Software</topic><topic>Surgery</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ye</creatorcontrib><creatorcontrib>Shao, Lizhi</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Yang, Guanyu</creatorcontrib><creatorcontrib>Liu, Jiangang</creatorcontrib><creatorcontrib>Xia, Haizhui</creatorcontrib><creatorcontrib>Zhang, Yuting</creatorcontrib><creatorcontrib>Chen, Huiying</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Lu, Min</creatorcontrib><creatorcontrib>Ma, Lulin</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Zhou, Xuezhi</creatorcontrib><creatorcontrib>Ye, Xiongjun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ye</au><au>Shao, Lizhi</au><au>Liu, Zhenyu</au><au>He, Wei</au><au>Yang, Guanyu</au><au>Liu, Jiangang</au><au>Xia, Haizhui</au><au>Zhang, Yuting</au><au>Chen, Huiying</au><au>Liu, Cheng</au><au>Lu, Min</au><au>Ma, Lulin</au><au>Sun, Kai</au><au>Zhou, Xuezhi</au><au>Ye, Xiongjun</au><au>Wang, Lei</au><au>Tian, Jie</au><au>Lu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study</atitle><jtitle>Cancers</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>13</volume><issue>12</issue><spage>3098</spage><pages>3098-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize treatment. We retrospectively enrolled 485 patients underwent RP from 2010 to 2017 in three institutions. Quantitative and interpretable features were extracted from T2 delineated tumors. Deep learning-based survival analysis was then applied to develop the deep-radiomic signature (DRS-BCR). The model’s performance was further evaluated, in comparison with conventional clinical models. The model achieved C-index of 0.802 in both primary and validating cohorts, outweighed the CAPRA-S score (0.677), NCCN model (0.586) and Gleason grade group systems (0.583). With application analysis, DRS-BCR model can significantly reduce false-positive predictions, so that nearly one-third of patients could benefit from the model by avoiding overtreatments. The deep learning-based survival analysis assisted quantitative image features from MRI performed well in prediction for BCR and has significant potential in optimizing systemic neoadjuvant or adjuvant therapies for prostate cancer patients.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34205786</pmid><doi>10.3390/cancers13123098</doi><orcidid>https://orcid.org/0000-0003-0847-561X</orcidid><orcidid>https://orcid.org/0000-0001-7559-8519</orcidid><orcidid>https://orcid.org/0000-0002-9144-7486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-06, Vol.13 (12), p.3098
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234539
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Biopsy
Deep learning
Hospitals
Image processing
Magnetic resonance imaging
Medical prognosis
Metastasis
Neural networks
Pathology
Patients
Performance evaluation
Prediction models
Prostate cancer
Prostatectomy
Radiomics
Software
Surgery
Survival
Survival analysis
Tumors
title Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20with%20Quantitative%20Features%20of%20Magnetic%20Resonance%20Images%20to%20Predict%20Biochemical%20Recurrence%20of%20Radical%20Prostatectomy:%20A%20Multi-Center%20Study&rft.jtitle=Cancers&rft.au=Yan,%20Ye&rft.date=2021-06-21&rft.volume=13&rft.issue=12&rft.spage=3098&rft.pages=3098-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13123098&rft_dat=%3Cproquest_pubme%3E2548397259%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544958380&rft_id=info:pmid/34205786&rfr_iscdi=true