Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches

The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia’s bioactive compounds in order to predict their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In silico pharmacology 2021-06, Vol.9 (1), p.39-39, Article 39
Hauptverfasser: Adelusi, Temitope Isaac, Abdul-Hammed, Misbaudeen, Idris, Mukhtar Oluwaseun, Kehinde, Oyedele Qudus, Boyenle, Ibrahim Damilare, Divine, Ukachi Chiamaka, Adedotun, Ibrahim Olaide, Folorunsho, Ajayi Ayodeji, Kolawole, Oladipo Elijah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 39
container_title In silico pharmacology
container_volume 9
creator Adelusi, Temitope Isaac
Abdul-Hammed, Misbaudeen
Idris, Mukhtar Oluwaseun
Kehinde, Oyedele Qudus
Boyenle, Ibrahim Damilare
Divine, Ukachi Chiamaka
Adedotun, Ibrahim Olaide
Folorunsho, Ajayi Ayodeji
Kolawole, Oladipo Elijah
description The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia’s bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of Momordica charantia , catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have − 9.2 kJ/mol and − 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess. Graphic abstract
doi_str_mv 10.1007/s40203-021-00100-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8233444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550636681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3192-8b0dd1a5f6d228526a87699bb9cd0515f964cece12b76ef041026dfd02dfd09f3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EolXpC7BAltiwCYx_4htvkFBVftQiNrC2HNu5cZXYwXaq9hF4axxuKYUFG9ua-eaMjw5Czwm8JgC7N5kDBdYAJQ1ArTT0ETqmRLJGCiIeP3gfodOcr6BShO54R56iI8YplwLgGP04v1mmmHzY4zI67MPoe19iusVLLC4Ur6eM44A_xzkm643GZtRJbw3c-6hN8dcOmzgvcQ02Y73XPuSCL5xeSHPhJjPiJVUpH_CatzUbuxZdfAx6wnqpXW1Gl5-hJ0Nd5k7v7hP07f3517OPzeWXD5_O3l02hhFJm64Ha4luB2Ep7VoqdLcTUva9NBZa0g5ScOOMI7TfCTcAJ0CFHSzQ7ZADO0FvD7rL2s_Ommoy6Uktyc863aqovfq7E_yo9vFadZQxznkVeHUnkOL31eWiZp-NmyYdXFyzom0LggnRkYq-_Ae9imuqvjeKcym5ZKJS9ECZFHNObrj_DAG1ha0OYasatvoVtqJ16MVDG_cjv6OtADsAednidenP7v_I_gSXDbiC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544994936</pqid></control><display><type>article</type><title>Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches</title><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Adelusi, Temitope Isaac ; Abdul-Hammed, Misbaudeen ; Idris, Mukhtar Oluwaseun ; Kehinde, Oyedele Qudus ; Boyenle, Ibrahim Damilare ; Divine, Ukachi Chiamaka ; Adedotun, Ibrahim Olaide ; Folorunsho, Ajayi Ayodeji ; Kolawole, Oladipo Elijah</creator><creatorcontrib>Adelusi, Temitope Isaac ; Abdul-Hammed, Misbaudeen ; Idris, Mukhtar Oluwaseun ; Kehinde, Oyedele Qudus ; Boyenle, Ibrahim Damilare ; Divine, Ukachi Chiamaka ; Adedotun, Ibrahim Olaide ; Folorunsho, Ajayi Ayodeji ; Kolawole, Oladipo Elijah</creatorcontrib><description>The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia’s bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of Momordica charantia , catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have − 9.2 kJ/mol and − 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess. Graphic abstract</description><identifier>ISSN: 2193-9616</identifier><identifier>EISSN: 2193-9616</identifier><identifier>DOI: 10.1007/s40203-021-00100-2</identifier><identifier>PMID: 34249600</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Antioxidants ; Binding energy ; Binding sites ; Biological activity ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Catechin ; Cellular and Medical Topics ; Chlorogenic acid ; Computational Science and Engineering ; Domains ; Gibbs free energy ; Herbal medicine ; Hydrogen bonds ; Investigations ; Ligands ; Mathematical analysis ; Medicinal Chemistry ; Molecular docking ; Molecular dynamics ; Original Research ; Oxidative stress ; Pharmacology ; Pharmacology/Toxicology ; Physiological ; Proteins</subject><ispartof>In silico pharmacology, 2021-06, Vol.9 (1), p.39-39, Article 39</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3192-8b0dd1a5f6d228526a87699bb9cd0515f964cece12b76ef041026dfd02dfd09f3</citedby><cites>FETCH-LOGICAL-c3192-8b0dd1a5f6d228526a87699bb9cd0515f964cece12b76ef041026dfd02dfd09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233444/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233444/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34249600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adelusi, Temitope Isaac</creatorcontrib><creatorcontrib>Abdul-Hammed, Misbaudeen</creatorcontrib><creatorcontrib>Idris, Mukhtar Oluwaseun</creatorcontrib><creatorcontrib>Kehinde, Oyedele Qudus</creatorcontrib><creatorcontrib>Boyenle, Ibrahim Damilare</creatorcontrib><creatorcontrib>Divine, Ukachi Chiamaka</creatorcontrib><creatorcontrib>Adedotun, Ibrahim Olaide</creatorcontrib><creatorcontrib>Folorunsho, Ajayi Ayodeji</creatorcontrib><creatorcontrib>Kolawole, Oladipo Elijah</creatorcontrib><title>Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches</title><title>In silico pharmacology</title><addtitle>In Silico Pharmacol</addtitle><addtitle>In Silico Pharmacol</addtitle><description>The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia’s bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of Momordica charantia , catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have − 9.2 kJ/mol and − 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess. Graphic abstract</description><subject>Amino acids</subject><subject>Antioxidants</subject><subject>Binding energy</subject><subject>Binding sites</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Catechin</subject><subject>Cellular and Medical Topics</subject><subject>Chlorogenic acid</subject><subject>Computational Science and Engineering</subject><subject>Domains</subject><subject>Gibbs free energy</subject><subject>Herbal medicine</subject><subject>Hydrogen bonds</subject><subject>Investigations</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Medicinal Chemistry</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Original Research</subject><subject>Oxidative stress</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Physiological</subject><subject>Proteins</subject><issn>2193-9616</issn><issn>2193-9616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1u1TAQhS0EolXpC7BAltiwCYx_4htvkFBVftQiNrC2HNu5cZXYwXaq9hF4axxuKYUFG9ua-eaMjw5Czwm8JgC7N5kDBdYAJQ1ArTT0ETqmRLJGCiIeP3gfodOcr6BShO54R56iI8YplwLgGP04v1mmmHzY4zI67MPoe19iusVLLC4Ur6eM44A_xzkm643GZtRJbw3c-6hN8dcOmzgvcQ02Y73XPuSCL5xeSHPhJjPiJVUpH_CatzUbuxZdfAx6wnqpXW1Gl5-hJ0Nd5k7v7hP07f3517OPzeWXD5_O3l02hhFJm64Ha4luB2Ep7VoqdLcTUva9NBZa0g5ScOOMI7TfCTcAJ0CFHSzQ7ZADO0FvD7rL2s_Ommoy6Uktyc863aqovfq7E_yo9vFadZQxznkVeHUnkOL31eWiZp-NmyYdXFyzom0LggnRkYq-_Ae9imuqvjeKcym5ZKJS9ECZFHNObrj_DAG1ha0OYasatvoVtqJ16MVDG_cjv6OtADsAednidenP7v_I_gSXDbiC</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Adelusi, Temitope Isaac</creator><creator>Abdul-Hammed, Misbaudeen</creator><creator>Idris, Mukhtar Oluwaseun</creator><creator>Kehinde, Oyedele Qudus</creator><creator>Boyenle, Ibrahim Damilare</creator><creator>Divine, Ukachi Chiamaka</creator><creator>Adedotun, Ibrahim Olaide</creator><creator>Folorunsho, Ajayi Ayodeji</creator><creator>Kolawole, Oladipo Elijah</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>M0S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210625</creationdate><title>Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches</title><author>Adelusi, Temitope Isaac ; Abdul-Hammed, Misbaudeen ; Idris, Mukhtar Oluwaseun ; Kehinde, Oyedele Qudus ; Boyenle, Ibrahim Damilare ; Divine, Ukachi Chiamaka ; Adedotun, Ibrahim Olaide ; Folorunsho, Ajayi Ayodeji ; Kolawole, Oladipo Elijah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3192-8b0dd1a5f6d228526a87699bb9cd0515f964cece12b76ef041026dfd02dfd09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Antioxidants</topic><topic>Binding energy</topic><topic>Binding sites</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Catechin</topic><topic>Cellular and Medical Topics</topic><topic>Chlorogenic acid</topic><topic>Computational Science and Engineering</topic><topic>Domains</topic><topic>Gibbs free energy</topic><topic>Herbal medicine</topic><topic>Hydrogen bonds</topic><topic>Investigations</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Medicinal Chemistry</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Original Research</topic><topic>Oxidative stress</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Physiological</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adelusi, Temitope Isaac</creatorcontrib><creatorcontrib>Abdul-Hammed, Misbaudeen</creatorcontrib><creatorcontrib>Idris, Mukhtar Oluwaseun</creatorcontrib><creatorcontrib>Kehinde, Oyedele Qudus</creatorcontrib><creatorcontrib>Boyenle, Ibrahim Damilare</creatorcontrib><creatorcontrib>Divine, Ukachi Chiamaka</creatorcontrib><creatorcontrib>Adedotun, Ibrahim Olaide</creatorcontrib><creatorcontrib>Folorunsho, Ajayi Ayodeji</creatorcontrib><creatorcontrib>Kolawole, Oladipo Elijah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>In silico pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adelusi, Temitope Isaac</au><au>Abdul-Hammed, Misbaudeen</au><au>Idris, Mukhtar Oluwaseun</au><au>Kehinde, Oyedele Qudus</au><au>Boyenle, Ibrahim Damilare</au><au>Divine, Ukachi Chiamaka</au><au>Adedotun, Ibrahim Olaide</au><au>Folorunsho, Ajayi Ayodeji</au><au>Kolawole, Oladipo Elijah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches</atitle><jtitle>In silico pharmacology</jtitle><stitle>In Silico Pharmacol</stitle><addtitle>In Silico Pharmacol</addtitle><date>2021-06-25</date><risdate>2021</risdate><volume>9</volume><issue>1</issue><spage>39</spage><epage>39</epage><pages>39-39</pages><artnum>39</artnum><issn>2193-9616</issn><eissn>2193-9616</eissn><abstract>The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia’s bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of Momordica charantia , catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have − 9.2 kJ/mol and − 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34249600</pmid><doi>10.1007/s40203-021-00100-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2193-9616
ispartof In silico pharmacology, 2021-06, Vol.9 (1), p.39-39, Article 39
issn 2193-9616
2193-9616
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8233444
source PubMed Central; SpringerLink Journals - AutoHoldings
subjects Amino acids
Antioxidants
Binding energy
Binding sites
Biological activity
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Catechin
Cellular and Medical Topics
Chlorogenic acid
Computational Science and Engineering
Domains
Gibbs free energy
Herbal medicine
Hydrogen bonds
Investigations
Ligands
Mathematical analysis
Medicinal Chemistry
Molecular docking
Molecular dynamics
Original Research
Oxidative stress
Pharmacology
Pharmacology/Toxicology
Physiological
Proteins
title Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20inhibitory%20potentials%20of%20Momordica%20charantia%20bioactive%20compounds%20against%20Keap1-Kelch%20protein%20using%20computational%20approaches&rft.jtitle=In%20silico%20pharmacology&rft.au=Adelusi,%20Temitope%20Isaac&rft.date=2021-06-25&rft.volume=9&rft.issue=1&rft.spage=39&rft.epage=39&rft.pages=39-39&rft.artnum=39&rft.issn=2193-9616&rft.eissn=2193-9616&rft_id=info:doi/10.1007/s40203-021-00100-2&rft_dat=%3Cproquest_pubme%3E2550636681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544994936&rft_id=info:pmid/34249600&rfr_iscdi=true