Mapping the expression of transient receptor potential channels across murine placental development

Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2021-06, Vol.78 (11), p.4993-5014
Hauptverfasser: De Clercq, Katrien, Pérez-García, Vicente, Van Bree, Rieta, Pollastro, Federica, Peeraer, Karen, Voets, Thomas, Vriens, Joris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5014
container_issue 11
container_start_page 4993
container_title Cellular and molecular life sciences : CMLS
container_volume 78
creator De Clercq, Katrien
Pérez-García, Vicente
Van Bree, Rieta
Pollastro, Federica
Peeraer, Karen
Voets, Thomas
Vriens, Joris
description Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2 , Trpm6 , and Trpm7 . Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.
doi_str_mv 10.1007/s00018-021-03837-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8233283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516841550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6491a6cf9231e1280781b3da1b066f0e22b87377649663ac59e14672c4ded75f3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1UREvhC_SALHHpJeB_sZ1LJVS1FKmIC0jcLK8z2XWV2MZOqvLt8XaXlnLoyR7Nz2_e-CF0QskHSoj6WAghVDeE0YZwzVXDX6AjKhhpOqLowf4uNft5iF6XclPpVjP5Ch1yrrUQgh8h99Wm5MMazxvAcJcylOJjwHHAc7aheAgzzuAgzTHjFOdaeztit7EhwFiwdTmWgqcl-wA4jdZVogI93MIY01SrN-jlYMcCb_fnMfpxefH9_Kq5_vb5y_mn68YJJeZGio5a6YaOcQqUaaI0XfHe0hWRciDA2EorrlTlpOTWtR1QIRVzoodetQM_Rmc73bSsJui3RrIdTcp-svm3idabp53gN2Ydb41mnDPNq8DpXiDHXwuU2Uy-OBhHGyAuxbCWSi1o25KKvv8PvYlLDnW9SgnRdVRoXSm2o-4_KcPwYIYSs83Q7DI0NUNzn6HZunj37xoPT_6GVgG-A0pthTXkx9nPyP4B8eSpFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544991488</pqid></control><display><type>article</type><title>Mapping the expression of transient receptor potential channels across murine placental development</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>De Clercq, Katrien ; Pérez-García, Vicente ; Van Bree, Rieta ; Pollastro, Federica ; Peeraer, Karen ; Voets, Thomas ; Vriens, Joris</creator><creatorcontrib>De Clercq, Katrien ; Pérez-García, Vicente ; Van Bree, Rieta ; Pollastro, Federica ; Peeraer, Karen ; Voets, Thomas ; Vriens, Joris</creatorcontrib><description>Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2 , Trpm6 , and Trpm7 . Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-021-03837-3</identifier><identifier>PMID: 33884443</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcium ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium Signaling ; Calcium signalling ; Calcium transport ; Cell Biology ; Cell Differentiation ; Cell Proliferation ; Channels ; Embryo cells ; Female ; Fetuses ; Gene Expression Regulation ; Gestation ; Homeostasis ; Hybridization ; Life Sciences ; Magnesium ; Mice ; Mice, Inbred C57BL ; Mouse Embryonic Stem Cells - cytology ; Mouse Embryonic Stem Cells - metabolism ; Original ; Original Article ; Placenta ; Placenta - metabolism ; Placentation - genetics ; Pregnancy ; Receptors ; Stability ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Transient Receptor Potential Channels - genetics ; Transient Receptor Potential Channels - metabolism ; Transient receptor potential proteins ; Trophoblasts ; Trophoblasts - cytology ; Trophoblasts - metabolism ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2021-06, Vol.78 (11), p.4993-5014</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6491a6cf9231e1280781b3da1b066f0e22b87377649663ac59e14672c4ded75f3</citedby><cites>FETCH-LOGICAL-c474t-6491a6cf9231e1280781b3da1b066f0e22b87377649663ac59e14672c4ded75f3</cites><orcidid>0000-0002-2502-0409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233283/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233283/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33884443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Clercq, Katrien</creatorcontrib><creatorcontrib>Pérez-García, Vicente</creatorcontrib><creatorcontrib>Van Bree, Rieta</creatorcontrib><creatorcontrib>Pollastro, Federica</creatorcontrib><creatorcontrib>Peeraer, Karen</creatorcontrib><creatorcontrib>Voets, Thomas</creatorcontrib><creatorcontrib>Vriens, Joris</creatorcontrib><title>Mapping the expression of transient receptor potential channels across murine placental development</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2 , Trpm6 , and Trpm7 . Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Calcium transport</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Channels</subject><subject>Embryo cells</subject><subject>Female</subject><subject>Fetuses</subject><subject>Gene Expression Regulation</subject><subject>Gestation</subject><subject>Homeostasis</subject><subject>Hybridization</subject><subject>Life Sciences</subject><subject>Magnesium</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mouse Embryonic Stem Cells - cytology</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Original</subject><subject>Original Article</subject><subject>Placenta</subject><subject>Placenta - metabolism</subject><subject>Placentation - genetics</subject><subject>Pregnancy</subject><subject>Receptors</subject><subject>Stability</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Transient Receptor Potential Channels - genetics</subject><subject>Transient Receptor Potential Channels - metabolism</subject><subject>Transient receptor potential proteins</subject><subject>Trophoblasts</subject><subject>Trophoblasts - cytology</subject><subject>Trophoblasts - metabolism</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9v1DAQxS1UREvhC_SALHHpJeB_sZ1LJVS1FKmIC0jcLK8z2XWV2MZOqvLt8XaXlnLoyR7Nz2_e-CF0QskHSoj6WAghVDeE0YZwzVXDX6AjKhhpOqLowf4uNft5iF6XclPpVjP5Ch1yrrUQgh8h99Wm5MMazxvAcJcylOJjwHHAc7aheAgzzuAgzTHjFOdaeztit7EhwFiwdTmWgqcl-wA4jdZVogI93MIY01SrN-jlYMcCb_fnMfpxefH9_Kq5_vb5y_mn68YJJeZGio5a6YaOcQqUaaI0XfHe0hWRciDA2EorrlTlpOTWtR1QIRVzoodetQM_Rmc73bSsJui3RrIdTcp-svm3idabp53gN2Ydb41mnDPNq8DpXiDHXwuU2Uy-OBhHGyAuxbCWSi1o25KKvv8PvYlLDnW9SgnRdVRoXSm2o-4_KcPwYIYSs83Q7DI0NUNzn6HZunj37xoPT_6GVgG-A0pthTXkx9nPyP4B8eSpFw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>De Clercq, Katrien</creator><creator>Pérez-García, Vicente</creator><creator>Van Bree, Rieta</creator><creator>Pollastro, Federica</creator><creator>Peeraer, Karen</creator><creator>Voets, Thomas</creator><creator>Vriens, Joris</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2502-0409</orcidid></search><sort><creationdate>20210601</creationdate><title>Mapping the expression of transient receptor potential channels across murine placental development</title><author>De Clercq, Katrien ; Pérez-García, Vicente ; Van Bree, Rieta ; Pollastro, Federica ; Peeraer, Karen ; Voets, Thomas ; Vriens, Joris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6491a6cf9231e1280781b3da1b066f0e22b87377649663ac59e14672c4ded75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Calcium transport</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Channels</topic><topic>Embryo cells</topic><topic>Female</topic><topic>Fetuses</topic><topic>Gene Expression Regulation</topic><topic>Gestation</topic><topic>Homeostasis</topic><topic>Hybridization</topic><topic>Life Sciences</topic><topic>Magnesium</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mouse Embryonic Stem Cells - cytology</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Original</topic><topic>Original Article</topic><topic>Placenta</topic><topic>Placenta - metabolism</topic><topic>Placentation - genetics</topic><topic>Pregnancy</topic><topic>Receptors</topic><topic>Stability</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Transient Receptor Potential Channels - genetics</topic><topic>Transient Receptor Potential Channels - metabolism</topic><topic>Transient receptor potential proteins</topic><topic>Trophoblasts</topic><topic>Trophoblasts - cytology</topic><topic>Trophoblasts - metabolism</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Clercq, Katrien</creatorcontrib><creatorcontrib>Pérez-García, Vicente</creatorcontrib><creatorcontrib>Van Bree, Rieta</creatorcontrib><creatorcontrib>Pollastro, Federica</creatorcontrib><creatorcontrib>Peeraer, Karen</creatorcontrib><creatorcontrib>Voets, Thomas</creatorcontrib><creatorcontrib>Vriens, Joris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Clercq, Katrien</au><au>Pérez-García, Vicente</au><au>Van Bree, Rieta</au><au>Pollastro, Federica</au><au>Peeraer, Karen</au><au>Voets, Thomas</au><au>Vriens, Joris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the expression of transient receptor potential channels across murine placental development</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>78</volume><issue>11</issue><spage>4993</spage><epage>5014</epage><pages>4993-5014</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2 , Trpm6 , and Trpm7 . Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33884443</pmid><doi>10.1007/s00018-021-03837-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2502-0409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2021-06, Vol.78 (11), p.4993-5014
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8233283
source MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central
subjects Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Calcium
Calcium Channels - genetics
Calcium Channels - metabolism
Calcium Signaling
Calcium signalling
Calcium transport
Cell Biology
Cell Differentiation
Cell Proliferation
Channels
Embryo cells
Female
Fetuses
Gene Expression Regulation
Gestation
Homeostasis
Hybridization
Life Sciences
Magnesium
Mice
Mice, Inbred C57BL
Mouse Embryonic Stem Cells - cytology
Mouse Embryonic Stem Cells - metabolism
Original
Original Article
Placenta
Placenta - metabolism
Placentation - genetics
Pregnancy
Receptors
Stability
Stem cell transplantation
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Transient Receptor Potential Channels - genetics
Transient Receptor Potential Channels - metabolism
Transient receptor potential proteins
Trophoblasts
Trophoblasts - cytology
Trophoblasts - metabolism
TRPV Cation Channels - genetics
TRPV Cation Channels - metabolism
title Mapping the expression of transient receptor potential channels across murine placental development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20expression%20of%20transient%20receptor%20potential%20channels%20across%20murine%20placental%20development&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=De%20Clercq,%20Katrien&rft.date=2021-06-01&rft.volume=78&rft.issue=11&rft.spage=4993&rft.epage=5014&rft.pages=4993-5014&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-021-03837-3&rft_dat=%3Cproquest_pubme%3E2516841550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544991488&rft_id=info:pmid/33884443&rfr_iscdi=true