The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material

The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-06, Vol.14 (12), p.3297
Hauptverfasser: Kołacz, Dariusz, Księżarek, Stanisław, Borkowski, Piotr, Karwan-Baczewska, Joanna, Lis, Marcin, Kamińska, Małgorzata, Juszczyk, Barbara, Kulasa, Joanna, Kowalski, Aleksander, Wierzbicki, Łukasz, Marszowski, Krzysztof, Jabłoński, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 3297
container_title Materials
container_volume 14
creator Kołacz, Dariusz
Księżarek, Stanisław
Borkowski, Piotr
Karwan-Baczewska, Joanna
Lis, Marcin
Kamińska, Małgorzata
Juszczyk, Barbara
Kulasa, Joanna
Kowalski, Aleksander
Wierzbicki, Łukasz
Marszowski, Krzysztof
Jabłoński, Mariusz
description The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).
doi_str_mv 10.3390/ma14123297
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8232213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548397826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</originalsourceid><addsrcrecordid>eNpdkc9qXCEUh6W0NCHNpk8gdFMK0-pV79VNYRiSNpDQENK1nPHqjMGrU_UWsus2675hn6ROEvonInjgfH7o7yD0mpL3jCnyYQLKacc6NTxDh1SpfkEV58__qQ_QcSk3pC3GqOzUS3TAeEdYT_tDdHe9tfgsujDbaCxODl9Ys4XoDQS8DCHd-rjBEEd8GaBUb_AqxZKCH6H6FHHbtRmubPGlwl5RE15mg09yKveAuweWm18_fl7ZdnvatUbdV7GCqfgCqs0ewiv0wkEo9vjxPEJfT0-uV58X518-na2W5wvDJKsLpdY9pz3vBGGDoISvrZVSEjMKMAxED9JZ4QQFxwkFLq1QwyDGNYCjriV1hD4-eHfzerKjsbFmCHqX_QT5Vifw-v9O9Fu9Sd-1bCl3lDXB20dBTt9mW6qefDE2BIg2zUV3gkumBtn1DX3zBL1Jc47te3tKEKIYJY1690CZllnJ1v15DCV6P2T9d8jsN6JHmao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545009310</pqid></control><display><type>article</type><title>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Freely accessible e-journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Kołacz, Dariusz ; Księżarek, Stanisław ; Borkowski, Piotr ; Karwan-Baczewska, Joanna ; Lis, Marcin ; Kamińska, Małgorzata ; Juszczyk, Barbara ; Kulasa, Joanna ; Kowalski, Aleksander ; Wierzbicki, Łukasz ; Marszowski, Krzysztof ; Jabłoński, Mariusz</creator><creatorcontrib>Kołacz, Dariusz ; Księżarek, Stanisław ; Borkowski, Piotr ; Karwan-Baczewska, Joanna ; Lis, Marcin ; Kamińska, Małgorzata ; Juszczyk, Barbara ; Kulasa, Joanna ; Kowalski, Aleksander ; Wierzbicki, Łukasz ; Marszowski, Krzysztof ; Jabłoński, Mariusz</creatorcontrib><description>The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14123297</identifier><identifier>PMID: 34203616</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloying effects ; Alternating current ; Chemical composition ; Composite materials ; Consolidation ; Die drawing ; Die forging ; Direct current ; Drawing dies ; Electric contacts ; Electric discharge machining ; Erosion resistance ; Extrusion dies ; Grain size ; Manufacturing ; Materials selection ; Mechanical alloying ; Mechanical properties ; Morphology ; Plasma sintering ; Powder metallurgy ; Pressing ; Reference materials ; Rhenium ; Sintering (powder metallurgy) ; Spraying ; Tin dioxide ; Wire drawing</subject><ispartof>Materials, 2021-06, Vol.14 (12), p.3297</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</citedby><cites>FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</cites><orcidid>0000-0002-9968-2632 ; 0000-0001-8314-8868 ; 0000-0003-4086-3786 ; 0000-0002-1215-1995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Kołacz, Dariusz</creatorcontrib><creatorcontrib>Księżarek, Stanisław</creatorcontrib><creatorcontrib>Borkowski, Piotr</creatorcontrib><creatorcontrib>Karwan-Baczewska, Joanna</creatorcontrib><creatorcontrib>Lis, Marcin</creatorcontrib><creatorcontrib>Kamińska, Małgorzata</creatorcontrib><creatorcontrib>Juszczyk, Barbara</creatorcontrib><creatorcontrib>Kulasa, Joanna</creatorcontrib><creatorcontrib>Kowalski, Aleksander</creatorcontrib><creatorcontrib>Wierzbicki, Łukasz</creatorcontrib><creatorcontrib>Marszowski, Krzysztof</creatorcontrib><creatorcontrib>Jabłoński, Mariusz</creatorcontrib><title>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</title><title>Materials</title><description>The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).</description><subject>Alloying effects</subject><subject>Alternating current</subject><subject>Chemical composition</subject><subject>Composite materials</subject><subject>Consolidation</subject><subject>Die drawing</subject><subject>Die forging</subject><subject>Direct current</subject><subject>Drawing dies</subject><subject>Electric contacts</subject><subject>Electric discharge machining</subject><subject>Erosion resistance</subject><subject>Extrusion dies</subject><subject>Grain size</subject><subject>Manufacturing</subject><subject>Materials selection</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Pressing</subject><subject>Reference materials</subject><subject>Rhenium</subject><subject>Sintering (powder metallurgy)</subject><subject>Spraying</subject><subject>Tin dioxide</subject><subject>Wire drawing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc9qXCEUh6W0NCHNpk8gdFMK0-pV79VNYRiSNpDQENK1nPHqjMGrU_UWsus2675hn6ROEvonInjgfH7o7yD0mpL3jCnyYQLKacc6NTxDh1SpfkEV58__qQ_QcSk3pC3GqOzUS3TAeEdYT_tDdHe9tfgsujDbaCxODl9Ys4XoDQS8DCHd-rjBEEd8GaBUb_AqxZKCH6H6FHHbtRmubPGlwl5RE15mg09yKveAuweWm18_fl7ZdnvatUbdV7GCqfgCqs0ewiv0wkEo9vjxPEJfT0-uV58X518-na2W5wvDJKsLpdY9pz3vBGGDoISvrZVSEjMKMAxED9JZ4QQFxwkFLq1QwyDGNYCjriV1hD4-eHfzerKjsbFmCHqX_QT5Vifw-v9O9Fu9Sd-1bCl3lDXB20dBTt9mW6qefDE2BIg2zUV3gkumBtn1DX3zBL1Jc47te3tKEKIYJY1690CZllnJ1v15DCV6P2T9d8jsN6JHmao</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Kołacz, Dariusz</creator><creator>Księżarek, Stanisław</creator><creator>Borkowski, Piotr</creator><creator>Karwan-Baczewska, Joanna</creator><creator>Lis, Marcin</creator><creator>Kamińska, Małgorzata</creator><creator>Juszczyk, Barbara</creator><creator>Kulasa, Joanna</creator><creator>Kowalski, Aleksander</creator><creator>Wierzbicki, Łukasz</creator><creator>Marszowski, Krzysztof</creator><creator>Jabłoński, Mariusz</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9968-2632</orcidid><orcidid>https://orcid.org/0000-0001-8314-8868</orcidid><orcidid>https://orcid.org/0000-0003-4086-3786</orcidid><orcidid>https://orcid.org/0000-0002-1215-1995</orcidid></search><sort><creationdate>20210615</creationdate><title>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</title><author>Kołacz, Dariusz ; Księżarek, Stanisław ; Borkowski, Piotr ; Karwan-Baczewska, Joanna ; Lis, Marcin ; Kamińska, Małgorzata ; Juszczyk, Barbara ; Kulasa, Joanna ; Kowalski, Aleksander ; Wierzbicki, Łukasz ; Marszowski, Krzysztof ; Jabłoński, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying effects</topic><topic>Alternating current</topic><topic>Chemical composition</topic><topic>Composite materials</topic><topic>Consolidation</topic><topic>Die drawing</topic><topic>Die forging</topic><topic>Direct current</topic><topic>Drawing dies</topic><topic>Electric contacts</topic><topic>Electric discharge machining</topic><topic>Erosion resistance</topic><topic>Extrusion dies</topic><topic>Grain size</topic><topic>Manufacturing</topic><topic>Materials selection</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Pressing</topic><topic>Reference materials</topic><topic>Rhenium</topic><topic>Sintering (powder metallurgy)</topic><topic>Spraying</topic><topic>Tin dioxide</topic><topic>Wire drawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kołacz, Dariusz</creatorcontrib><creatorcontrib>Księżarek, Stanisław</creatorcontrib><creatorcontrib>Borkowski, Piotr</creatorcontrib><creatorcontrib>Karwan-Baczewska, Joanna</creatorcontrib><creatorcontrib>Lis, Marcin</creatorcontrib><creatorcontrib>Kamińska, Małgorzata</creatorcontrib><creatorcontrib>Juszczyk, Barbara</creatorcontrib><creatorcontrib>Kulasa, Joanna</creatorcontrib><creatorcontrib>Kowalski, Aleksander</creatorcontrib><creatorcontrib>Wierzbicki, Łukasz</creatorcontrib><creatorcontrib>Marszowski, Krzysztof</creatorcontrib><creatorcontrib>Jabłoński, Mariusz</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kołacz, Dariusz</au><au>Księżarek, Stanisław</au><au>Borkowski, Piotr</au><au>Karwan-Baczewska, Joanna</au><au>Lis, Marcin</au><au>Kamińska, Małgorzata</au><au>Juszczyk, Barbara</au><au>Kulasa, Joanna</au><au>Kowalski, Aleksander</au><au>Wierzbicki, Łukasz</au><au>Marszowski, Krzysztof</au><au>Jabłoński, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</atitle><jtitle>Materials</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>3297</spage><pages>3297-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34203616</pmid><doi>10.3390/ma14123297</doi><orcidid>https://orcid.org/0000-0002-9968-2632</orcidid><orcidid>https://orcid.org/0000-0001-8314-8868</orcidid><orcidid>https://orcid.org/0000-0003-4086-3786</orcidid><orcidid>https://orcid.org/0000-0002-1215-1995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-06, Vol.14 (12), p.3297
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8232213
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Freely accessible e-journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloying effects
Alternating current
Chemical composition
Composite materials
Consolidation
Die drawing
Die forging
Direct current
Drawing dies
Electric contacts
Electric discharge machining
Erosion resistance
Extrusion dies
Grain size
Manufacturing
Materials selection
Mechanical alloying
Mechanical properties
Morphology
Plasma sintering
Powder metallurgy
Pressing
Reference materials
Rhenium
Sintering (powder metallurgy)
Spraying
Tin dioxide
Wire drawing
title The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Mechanical%20Alloying%20and%20Plastic%20Consolidation%20on%20the%20Resistance%20to%20Arc%20Erosion%20of%20the%20Ag%E2%80%93Re%20Composite%20Contact%20Material&rft.jtitle=Materials&rft.au=Ko%C5%82acz,%20Dariusz&rft.date=2021-06-15&rft.volume=14&rft.issue=12&rft.spage=3297&rft.pages=3297-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14123297&rft_dat=%3Cproquest_pubme%3E2548397826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545009310&rft_id=info:pmid/34203616&rfr_iscdi=true