The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material
The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). A...
Gespeichert in:
Veröffentlicht in: | Materials 2021-06, Vol.14 (12), p.3297 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 3297 |
container_title | Materials |
container_volume | 14 |
creator | Kołacz, Dariusz Księżarek, Stanisław Borkowski, Piotr Karwan-Baczewska, Joanna Lis, Marcin Kamińska, Małgorzata Juszczyk, Barbara Kulasa, Joanna Kowalski, Aleksander Wierzbicki, Łukasz Marszowski, Krzysztof Jabłoński, Mariusz |
description | The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10). |
doi_str_mv | 10.3390/ma14123297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8232213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548397826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</originalsourceid><addsrcrecordid>eNpdkc9qXCEUh6W0NCHNpk8gdFMK0-pV79VNYRiSNpDQENK1nPHqjMGrU_UWsus2675hn6ROEvonInjgfH7o7yD0mpL3jCnyYQLKacc6NTxDh1SpfkEV58__qQ_QcSk3pC3GqOzUS3TAeEdYT_tDdHe9tfgsujDbaCxODl9Ys4XoDQS8DCHd-rjBEEd8GaBUb_AqxZKCH6H6FHHbtRmubPGlwl5RE15mg09yKveAuweWm18_fl7ZdnvatUbdV7GCqfgCqs0ewiv0wkEo9vjxPEJfT0-uV58X518-na2W5wvDJKsLpdY9pz3vBGGDoISvrZVSEjMKMAxED9JZ4QQFxwkFLq1QwyDGNYCjriV1hD4-eHfzerKjsbFmCHqX_QT5Vifw-v9O9Fu9Sd-1bCl3lDXB20dBTt9mW6qefDE2BIg2zUV3gkumBtn1DX3zBL1Jc47te3tKEKIYJY1690CZllnJ1v15DCV6P2T9d8jsN6JHmao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545009310</pqid></control><display><type>article</type><title>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Freely accessible e-journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Kołacz, Dariusz ; Księżarek, Stanisław ; Borkowski, Piotr ; Karwan-Baczewska, Joanna ; Lis, Marcin ; Kamińska, Małgorzata ; Juszczyk, Barbara ; Kulasa, Joanna ; Kowalski, Aleksander ; Wierzbicki, Łukasz ; Marszowski, Krzysztof ; Jabłoński, Mariusz</creator><creatorcontrib>Kołacz, Dariusz ; Księżarek, Stanisław ; Borkowski, Piotr ; Karwan-Baczewska, Joanna ; Lis, Marcin ; Kamińska, Małgorzata ; Juszczyk, Barbara ; Kulasa, Joanna ; Kowalski, Aleksander ; Wierzbicki, Łukasz ; Marszowski, Krzysztof ; Jabłoński, Mariusz</creatorcontrib><description>The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14123297</identifier><identifier>PMID: 34203616</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloying effects ; Alternating current ; Chemical composition ; Composite materials ; Consolidation ; Die drawing ; Die forging ; Direct current ; Drawing dies ; Electric contacts ; Electric discharge machining ; Erosion resistance ; Extrusion dies ; Grain size ; Manufacturing ; Materials selection ; Mechanical alloying ; Mechanical properties ; Morphology ; Plasma sintering ; Powder metallurgy ; Pressing ; Reference materials ; Rhenium ; Sintering (powder metallurgy) ; Spraying ; Tin dioxide ; Wire drawing</subject><ispartof>Materials, 2021-06, Vol.14 (12), p.3297</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</citedby><cites>FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</cites><orcidid>0000-0002-9968-2632 ; 0000-0001-8314-8868 ; 0000-0003-4086-3786 ; 0000-0002-1215-1995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Kołacz, Dariusz</creatorcontrib><creatorcontrib>Księżarek, Stanisław</creatorcontrib><creatorcontrib>Borkowski, Piotr</creatorcontrib><creatorcontrib>Karwan-Baczewska, Joanna</creatorcontrib><creatorcontrib>Lis, Marcin</creatorcontrib><creatorcontrib>Kamińska, Małgorzata</creatorcontrib><creatorcontrib>Juszczyk, Barbara</creatorcontrib><creatorcontrib>Kulasa, Joanna</creatorcontrib><creatorcontrib>Kowalski, Aleksander</creatorcontrib><creatorcontrib>Wierzbicki, Łukasz</creatorcontrib><creatorcontrib>Marszowski, Krzysztof</creatorcontrib><creatorcontrib>Jabłoński, Mariusz</creatorcontrib><title>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</title><title>Materials</title><description>The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).</description><subject>Alloying effects</subject><subject>Alternating current</subject><subject>Chemical composition</subject><subject>Composite materials</subject><subject>Consolidation</subject><subject>Die drawing</subject><subject>Die forging</subject><subject>Direct current</subject><subject>Drawing dies</subject><subject>Electric contacts</subject><subject>Electric discharge machining</subject><subject>Erosion resistance</subject><subject>Extrusion dies</subject><subject>Grain size</subject><subject>Manufacturing</subject><subject>Materials selection</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Pressing</subject><subject>Reference materials</subject><subject>Rhenium</subject><subject>Sintering (powder metallurgy)</subject><subject>Spraying</subject><subject>Tin dioxide</subject><subject>Wire drawing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc9qXCEUh6W0NCHNpk8gdFMK0-pV79VNYRiSNpDQENK1nPHqjMGrU_UWsus2675hn6ROEvonInjgfH7o7yD0mpL3jCnyYQLKacc6NTxDh1SpfkEV58__qQ_QcSk3pC3GqOzUS3TAeEdYT_tDdHe9tfgsujDbaCxODl9Ys4XoDQS8DCHd-rjBEEd8GaBUb_AqxZKCH6H6FHHbtRmubPGlwl5RE15mg09yKveAuweWm18_fl7ZdnvatUbdV7GCqfgCqs0ewiv0wkEo9vjxPEJfT0-uV58X518-na2W5wvDJKsLpdY9pz3vBGGDoISvrZVSEjMKMAxED9JZ4QQFxwkFLq1QwyDGNYCjriV1hD4-eHfzerKjsbFmCHqX_QT5Vifw-v9O9Fu9Sd-1bCl3lDXB20dBTt9mW6qefDE2BIg2zUV3gkumBtn1DX3zBL1Jc47te3tKEKIYJY1690CZllnJ1v15DCV6P2T9d8jsN6JHmao</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Kołacz, Dariusz</creator><creator>Księżarek, Stanisław</creator><creator>Borkowski, Piotr</creator><creator>Karwan-Baczewska, Joanna</creator><creator>Lis, Marcin</creator><creator>Kamińska, Małgorzata</creator><creator>Juszczyk, Barbara</creator><creator>Kulasa, Joanna</creator><creator>Kowalski, Aleksander</creator><creator>Wierzbicki, Łukasz</creator><creator>Marszowski, Krzysztof</creator><creator>Jabłoński, Mariusz</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9968-2632</orcidid><orcidid>https://orcid.org/0000-0001-8314-8868</orcidid><orcidid>https://orcid.org/0000-0003-4086-3786</orcidid><orcidid>https://orcid.org/0000-0002-1215-1995</orcidid></search><sort><creationdate>20210615</creationdate><title>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</title><author>Kołacz, Dariusz ; Księżarek, Stanisław ; Borkowski, Piotr ; Karwan-Baczewska, Joanna ; Lis, Marcin ; Kamińska, Małgorzata ; Juszczyk, Barbara ; Kulasa, Joanna ; Kowalski, Aleksander ; Wierzbicki, Łukasz ; Marszowski, Krzysztof ; Jabłoński, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-99b64164250375104bee8880cd5ac3a56a8fe5f51af401a48e59775dbaaf1f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying effects</topic><topic>Alternating current</topic><topic>Chemical composition</topic><topic>Composite materials</topic><topic>Consolidation</topic><topic>Die drawing</topic><topic>Die forging</topic><topic>Direct current</topic><topic>Drawing dies</topic><topic>Electric contacts</topic><topic>Electric discharge machining</topic><topic>Erosion resistance</topic><topic>Extrusion dies</topic><topic>Grain size</topic><topic>Manufacturing</topic><topic>Materials selection</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Pressing</topic><topic>Reference materials</topic><topic>Rhenium</topic><topic>Sintering (powder metallurgy)</topic><topic>Spraying</topic><topic>Tin dioxide</topic><topic>Wire drawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kołacz, Dariusz</creatorcontrib><creatorcontrib>Księżarek, Stanisław</creatorcontrib><creatorcontrib>Borkowski, Piotr</creatorcontrib><creatorcontrib>Karwan-Baczewska, Joanna</creatorcontrib><creatorcontrib>Lis, Marcin</creatorcontrib><creatorcontrib>Kamińska, Małgorzata</creatorcontrib><creatorcontrib>Juszczyk, Barbara</creatorcontrib><creatorcontrib>Kulasa, Joanna</creatorcontrib><creatorcontrib>Kowalski, Aleksander</creatorcontrib><creatorcontrib>Wierzbicki, Łukasz</creatorcontrib><creatorcontrib>Marszowski, Krzysztof</creatorcontrib><creatorcontrib>Jabłoński, Mariusz</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kołacz, Dariusz</au><au>Księżarek, Stanisław</au><au>Borkowski, Piotr</au><au>Karwan-Baczewska, Joanna</au><au>Lis, Marcin</au><au>Kamińska, Małgorzata</au><au>Juszczyk, Barbara</au><au>Kulasa, Joanna</au><au>Kowalski, Aleksander</au><au>Wierzbicki, Łukasz</au><au>Marszowski, Krzysztof</au><au>Jabłoński, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material</atitle><jtitle>Materials</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>3297</spage><pages>3297-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article presents the influence of mechanical alloying and plastic consolidation on the resistance to arc erosion of the composite Ag–Re material against the selected contact materials. The following composites were selected for the tests: Ag90Re10, Ag95Re5, Ag99Re1 (bulk chemical composition). Ag–Re materials were made using two methods. In the first, the materials were obtained by mixing powders, pressing, sintering, extrusion, drawing, and die forging, whereas, in the second, the process of mechanical alloying was additionally used. The widely available Ag(SnO2)10 and AgNi10 contact materials were used as reference materials. The reference AgNi10 material was made by powder metallurgy in the process of mixing, pressing, sintering, extrusion, drawing, and die forging, while the Ag(SnO2)10 composite was obtained by spraying AgSniBi alloy with water, and then the powder was pressed, oxidized internally, sintered, extruded into wire, and drawn and die forged. The tests of electric arc resistance were carried out for loads with direct current (DC) and alternating current (AC). For alternating current (I = 60 A, U = 230 V), 15,000 switching cycles were made, while, for constant current 50,000 (I = 10 A, U = 550 V). A positive effect of the mechanical alloying process and the addition of a small amount of rhenium (1% by mass) on the spark erosion properties of the Ag–Re contact material was found. When DC current of 10 A was used, AgRe1 composite was found to be more resistant than commonly used contact materials (AgNi10 and Ag(SnO2)10).</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34203616</pmid><doi>10.3390/ma14123297</doi><orcidid>https://orcid.org/0000-0002-9968-2632</orcidid><orcidid>https://orcid.org/0000-0001-8314-8868</orcidid><orcidid>https://orcid.org/0000-0003-4086-3786</orcidid><orcidid>https://orcid.org/0000-0002-1215-1995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-06, Vol.14 (12), p.3297 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8232213 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Freely accessible e-journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloying effects Alternating current Chemical composition Composite materials Consolidation Die drawing Die forging Direct current Drawing dies Electric contacts Electric discharge machining Erosion resistance Extrusion dies Grain size Manufacturing Materials selection Mechanical alloying Mechanical properties Morphology Plasma sintering Powder metallurgy Pressing Reference materials Rhenium Sintering (powder metallurgy) Spraying Tin dioxide Wire drawing |
title | The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Mechanical%20Alloying%20and%20Plastic%20Consolidation%20on%20the%20Resistance%20to%20Arc%20Erosion%20of%20the%20Ag%E2%80%93Re%20Composite%20Contact%20Material&rft.jtitle=Materials&rft.au=Ko%C5%82acz,%20Dariusz&rft.date=2021-06-15&rft.volume=14&rft.issue=12&rft.spage=3297&rft.pages=3297-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14123297&rft_dat=%3Cproquest_pubme%3E2548397826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545009310&rft_id=info:pmid/34203616&rfr_iscdi=true |