Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain sciences 2021-05, Vol.11 (6), p.701, Article 701
Hauptverfasser: Chen, Cheng-Hsuan, Shyu, Kuo-Kai, Lu, Cheng-Kai, Jao, Chi-Wen, Lee, Po-Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 701
container_title Brain sciences
container_volume 11
creator Chen, Cheng-Hsuan
Shyu, Kuo-Kai
Lu, Cheng-Kai
Jao, Chi-Wen
Lee, Po-Lei
description The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.
doi_str_mv 10.3390/brainsci11060701
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bce511a6b46f45e3827e1762ff50f640</doaj_id><sourcerecordid>2536492258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</originalsourceid><addsrcrecordid>eNqNks9rFDEUxwdRbKm9exzwIsjqy--Zi1CnVheKFarn8CaT1CyzkzXJVBf_ebO7pdiezCUh7_P95vHyraqXBN4y1sK7PqKfkvGEgAQF5El1TEHJBeNUPP3nfFSdprSCshoAJuB5dcQ4KMYUPa7-dCOm5J03mH2Y6uDqr9G6GKaMY92FmO3v-sxkf-vztv6AyQ51wS7myez4wnyxGBfLyUWMpXa9sSbHkEzYbOtzzFjPm8JfjQ5NDnFbX2e_nsf9Yy-qZw7HZE_v9pPq-8XHb93nxeXVp2V3drkwXKq8IC0XpG3oQAGUMv0gKSrVO26Eda0C0wyU9FQ5hm3LepBopROcs4GjACHYSbU8-A4BV3oT_RrjVgf0en8R4o3GmL0Zre6NFYSg7Ll0XFjWUGWJktQ5AU5yKF7vD16buV_bwdgpRxwfmD6sTP6Hvgm3uqG0oXzXzOs7gxh-zjZlvfbJ2HHEyYY5aSqY5C2loinoq0foKsyxzHxHcS4JlS0rFBwoU8aeyt_dN0NA74KiHwelSJqD5JftgysVOxl7LytBkbL4N7vIAOl83v9WF-YpF-mb_5eyv73Q0vc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544612693</pqid></control><display><type>article</type><title>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Chen, Cheng-Hsuan ; Shyu, Kuo-Kai ; Lu, Cheng-Kai ; Jao, Chi-Wen ; Lee, Po-Lei</creator><creatorcontrib>Chen, Cheng-Hsuan ; Shyu, Kuo-Kai ; Lu, Cheng-Kai ; Jao, Chi-Wen ; Lee, Po-Lei</creatorcontrib><description>The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci11060701</identifier><identifier>PMID: 34073372</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Automation ; Classification ; Discriminant analysis ; Frontal lobe ; functional near-infrared spectroscopy ; hemoglobin response function ; I.R. radiation ; Infrared spectroscopy ; Life Sciences &amp; Biomedicine ; Light emitting diodes ; machine learning technique ; Neuroimaging ; Neurosciences ; Neurosciences &amp; Neurology ; Odor ; Olfaction ; Olfactory stimuli ; Physiology ; Portable computers ; Prefrontal cortex ; Science &amp; Technology ; Sensors ; Signal processing ; Software ; Spectrum analysis ; support vector machine ; Support vector machines</subject><ispartof>Brain sciences, 2021-05, Vol.11 (6), p.701, Article 701</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000665448000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</citedby><cites>FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</cites><orcidid>0000-0002-4270-1513 ; 0000-0002-5819-0754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228245/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids></links><search><creatorcontrib>Chen, Cheng-Hsuan</creatorcontrib><creatorcontrib>Shyu, Kuo-Kai</creatorcontrib><creatorcontrib>Lu, Cheng-Kai</creatorcontrib><creatorcontrib>Jao, Chi-Wen</creatorcontrib><creatorcontrib>Lee, Po-Lei</creatorcontrib><title>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</title><title>Brain sciences</title><addtitle>BRAIN SCI</addtitle><description>The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Frontal lobe</subject><subject>functional near-infrared spectroscopy</subject><subject>hemoglobin response function</subject><subject>I.R. radiation</subject><subject>Infrared spectroscopy</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Light emitting diodes</subject><subject>machine learning technique</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Odor</subject><subject>Olfaction</subject><subject>Olfactory stimuli</subject><subject>Physiology</subject><subject>Portable computers</subject><subject>Prefrontal cortex</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9rFDEUxwdRbKm9exzwIsjqy--Zi1CnVheKFarn8CaT1CyzkzXJVBf_ebO7pdiezCUh7_P95vHyraqXBN4y1sK7PqKfkvGEgAQF5El1TEHJBeNUPP3nfFSdprSCshoAJuB5dcQ4KMYUPa7-dCOm5J03mH2Y6uDqr9G6GKaMY92FmO3v-sxkf-vztv6AyQ51wS7myez4wnyxGBfLyUWMpXa9sSbHkEzYbOtzzFjPm8JfjQ5NDnFbX2e_nsf9Yy-qZw7HZE_v9pPq-8XHb93nxeXVp2V3drkwXKq8IC0XpG3oQAGUMv0gKSrVO26Eda0C0wyU9FQ5hm3LepBopROcs4GjACHYSbU8-A4BV3oT_RrjVgf0en8R4o3GmL0Zre6NFYSg7Ll0XFjWUGWJktQ5AU5yKF7vD16buV_bwdgpRxwfmD6sTP6Hvgm3uqG0oXzXzOs7gxh-zjZlvfbJ2HHEyYY5aSqY5C2loinoq0foKsyxzHxHcS4JlS0rFBwoU8aeyt_dN0NA74KiHwelSJqD5JftgysVOxl7LytBkbL4N7vIAOl83v9WF-YpF-mb_5eyv73Q0vc</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Chen, Cheng-Hsuan</creator><creator>Shyu, Kuo-Kai</creator><creator>Lu, Cheng-Kai</creator><creator>Jao, Chi-Wen</creator><creator>Lee, Po-Lei</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4270-1513</orcidid><orcidid>https://orcid.org/0000-0002-5819-0754</orcidid></search><sort><creationdate>20210526</creationdate><title>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</title><author>Chen, Cheng-Hsuan ; Shyu, Kuo-Kai ; Lu, Cheng-Kai ; Jao, Chi-Wen ; Lee, Po-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Frontal lobe</topic><topic>functional near-infrared spectroscopy</topic><topic>hemoglobin response function</topic><topic>I.R. radiation</topic><topic>Infrared spectroscopy</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Light emitting diodes</topic><topic>machine learning technique</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Odor</topic><topic>Olfaction</topic><topic>Olfactory stimuli</topic><topic>Physiology</topic><topic>Portable computers</topic><topic>Prefrontal cortex</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cheng-Hsuan</creatorcontrib><creatorcontrib>Shyu, Kuo-Kai</creatorcontrib><creatorcontrib>Lu, Cheng-Kai</creatorcontrib><creatorcontrib>Jao, Chi-Wen</creatorcontrib><creatorcontrib>Lee, Po-Lei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cheng-Hsuan</au><au>Shyu, Kuo-Kai</au><au>Lu, Cheng-Kai</au><au>Jao, Chi-Wen</au><au>Lee, Po-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</atitle><jtitle>Brain sciences</jtitle><stitle>BRAIN SCI</stitle><date>2021-05-26</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>701</spage><pages>701-</pages><artnum>701</artnum><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34073372</pmid><doi>10.3390/brainsci11060701</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4270-1513</orcidid><orcidid>https://orcid.org/0000-0002-5819-0754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3425
ispartof Brain sciences, 2021-05, Vol.11 (6), p.701, Article 701
issn 2076-3425
2076-3425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228245
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Accuracy
Automation
Classification
Discriminant analysis
Frontal lobe
functional near-infrared spectroscopy
hemoglobin response function
I.R. radiation
Infrared spectroscopy
Life Sciences & Biomedicine
Light emitting diodes
machine learning technique
Neuroimaging
Neurosciences
Neurosciences & Neurology
Odor
Olfaction
Olfactory stimuli
Physiology
Portable computers
Prefrontal cortex
Science & Technology
Sensors
Signal processing
Software
Spectrum analysis
support vector machine
Support vector machines
title Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Prefrontal%20Cortex%20Activity%20Based%20on%20Functional%20Near-Infrared%20Spectroscopy%20Data%20upon%20Olfactory%20Stimulation&rft.jtitle=Brain%20sciences&rft.au=Chen,%20Cheng-Hsuan&rft.date=2021-05-26&rft.volume=11&rft.issue=6&rft.spage=701&rft.pages=701-&rft.artnum=701&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci11060701&rft_dat=%3Cproquest_pubme%3E2536492258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544612693&rft_id=info:pmid/34073372&rft_doaj_id=oai_doaj_org_article_bce511a6b46f45e3827e1762ff50f640&rfr_iscdi=true