Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation
The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained fr...
Gespeichert in:
Veröffentlicht in: | Brain sciences 2021-05, Vol.11 (6), p.701, Article 701 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 701 |
container_title | Brain sciences |
container_volume | 11 |
creator | Chen, Cheng-Hsuan Shyu, Kuo-Kai Lu, Cheng-Kai Jao, Chi-Wen Lee, Po-Lei |
description | The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set. |
doi_str_mv | 10.3390/brainsci11060701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bce511a6b46f45e3827e1762ff50f640</doaj_id><sourcerecordid>2536492258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</originalsourceid><addsrcrecordid>eNqNks9rFDEUxwdRbKm9exzwIsjqy--Zi1CnVheKFarn8CaT1CyzkzXJVBf_ebO7pdiezCUh7_P95vHyraqXBN4y1sK7PqKfkvGEgAQF5El1TEHJBeNUPP3nfFSdprSCshoAJuB5dcQ4KMYUPa7-dCOm5J03mH2Y6uDqr9G6GKaMY92FmO3v-sxkf-vztv6AyQ51wS7myez4wnyxGBfLyUWMpXa9sSbHkEzYbOtzzFjPm8JfjQ5NDnFbX2e_nsf9Yy-qZw7HZE_v9pPq-8XHb93nxeXVp2V3drkwXKq8IC0XpG3oQAGUMv0gKSrVO26Eda0C0wyU9FQ5hm3LepBopROcs4GjACHYSbU8-A4BV3oT_RrjVgf0en8R4o3GmL0Zre6NFYSg7Ll0XFjWUGWJktQ5AU5yKF7vD16buV_bwdgpRxwfmD6sTP6Hvgm3uqG0oXzXzOs7gxh-zjZlvfbJ2HHEyYY5aSqY5C2loinoq0foKsyxzHxHcS4JlS0rFBwoU8aeyt_dN0NA74KiHwelSJqD5JftgysVOxl7LytBkbL4N7vIAOl83v9WF-YpF-mb_5eyv73Q0vc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544612693</pqid></control><display><type>article</type><title>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Chen, Cheng-Hsuan ; Shyu, Kuo-Kai ; Lu, Cheng-Kai ; Jao, Chi-Wen ; Lee, Po-Lei</creator><creatorcontrib>Chen, Cheng-Hsuan ; Shyu, Kuo-Kai ; Lu, Cheng-Kai ; Jao, Chi-Wen ; Lee, Po-Lei</creatorcontrib><description>The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci11060701</identifier><identifier>PMID: 34073372</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Automation ; Classification ; Discriminant analysis ; Frontal lobe ; functional near-infrared spectroscopy ; hemoglobin response function ; I.R. radiation ; Infrared spectroscopy ; Life Sciences & Biomedicine ; Light emitting diodes ; machine learning technique ; Neuroimaging ; Neurosciences ; Neurosciences & Neurology ; Odor ; Olfaction ; Olfactory stimuli ; Physiology ; Portable computers ; Prefrontal cortex ; Science & Technology ; Sensors ; Signal processing ; Software ; Spectrum analysis ; support vector machine ; Support vector machines</subject><ispartof>Brain sciences, 2021-05, Vol.11 (6), p.701, Article 701</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000665448000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</citedby><cites>FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</cites><orcidid>0000-0002-4270-1513 ; 0000-0002-5819-0754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228245/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids></links><search><creatorcontrib>Chen, Cheng-Hsuan</creatorcontrib><creatorcontrib>Shyu, Kuo-Kai</creatorcontrib><creatorcontrib>Lu, Cheng-Kai</creatorcontrib><creatorcontrib>Jao, Chi-Wen</creatorcontrib><creatorcontrib>Lee, Po-Lei</creatorcontrib><title>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</title><title>Brain sciences</title><addtitle>BRAIN SCI</addtitle><description>The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Frontal lobe</subject><subject>functional near-infrared spectroscopy</subject><subject>hemoglobin response function</subject><subject>I.R. radiation</subject><subject>Infrared spectroscopy</subject><subject>Life Sciences & Biomedicine</subject><subject>Light emitting diodes</subject><subject>machine learning technique</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Odor</subject><subject>Olfaction</subject><subject>Olfactory stimuli</subject><subject>Physiology</subject><subject>Portable computers</subject><subject>Prefrontal cortex</subject><subject>Science & Technology</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9rFDEUxwdRbKm9exzwIsjqy--Zi1CnVheKFarn8CaT1CyzkzXJVBf_ebO7pdiezCUh7_P95vHyraqXBN4y1sK7PqKfkvGEgAQF5El1TEHJBeNUPP3nfFSdprSCshoAJuB5dcQ4KMYUPa7-dCOm5J03mH2Y6uDqr9G6GKaMY92FmO3v-sxkf-vztv6AyQ51wS7myez4wnyxGBfLyUWMpXa9sSbHkEzYbOtzzFjPm8JfjQ5NDnFbX2e_nsf9Yy-qZw7HZE_v9pPq-8XHb93nxeXVp2V3drkwXKq8IC0XpG3oQAGUMv0gKSrVO26Eda0C0wyU9FQ5hm3LepBopROcs4GjACHYSbU8-A4BV3oT_RrjVgf0en8R4o3GmL0Zre6NFYSg7Ll0XFjWUGWJktQ5AU5yKF7vD16buV_bwdgpRxwfmD6sTP6Hvgm3uqG0oXzXzOs7gxh-zjZlvfbJ2HHEyYY5aSqY5C2loinoq0foKsyxzHxHcS4JlS0rFBwoU8aeyt_dN0NA74KiHwelSJqD5JftgysVOxl7LytBkbL4N7vIAOl83v9WF-YpF-mb_5eyv73Q0vc</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Chen, Cheng-Hsuan</creator><creator>Shyu, Kuo-Kai</creator><creator>Lu, Cheng-Kai</creator><creator>Jao, Chi-Wen</creator><creator>Lee, Po-Lei</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4270-1513</orcidid><orcidid>https://orcid.org/0000-0002-5819-0754</orcidid></search><sort><creationdate>20210526</creationdate><title>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</title><author>Chen, Cheng-Hsuan ; Shyu, Kuo-Kai ; Lu, Cheng-Kai ; Jao, Chi-Wen ; Lee, Po-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-19451982d20077cbd62a77bf4c5ef970c8d21b27f3a993b06ae6f5443d4a50553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Frontal lobe</topic><topic>functional near-infrared spectroscopy</topic><topic>hemoglobin response function</topic><topic>I.R. radiation</topic><topic>Infrared spectroscopy</topic><topic>Life Sciences & Biomedicine</topic><topic>Light emitting diodes</topic><topic>machine learning technique</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Odor</topic><topic>Olfaction</topic><topic>Olfactory stimuli</topic><topic>Physiology</topic><topic>Portable computers</topic><topic>Prefrontal cortex</topic><topic>Science & Technology</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cheng-Hsuan</creatorcontrib><creatorcontrib>Shyu, Kuo-Kai</creatorcontrib><creatorcontrib>Lu, Cheng-Kai</creatorcontrib><creatorcontrib>Jao, Chi-Wen</creatorcontrib><creatorcontrib>Lee, Po-Lei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cheng-Hsuan</au><au>Shyu, Kuo-Kai</au><au>Lu, Cheng-Kai</au><au>Jao, Chi-Wen</au><au>Lee, Po-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation</atitle><jtitle>Brain sciences</jtitle><stitle>BRAIN SCI</stitle><date>2021-05-26</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>701</spage><pages>701-</pages><artnum>701</artnum><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34073372</pmid><doi>10.3390/brainsci11060701</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4270-1513</orcidid><orcidid>https://orcid.org/0000-0002-5819-0754</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3425 |
ispartof | Brain sciences, 2021-05, Vol.11 (6), p.701, Article 701 |
issn | 2076-3425 2076-3425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228245 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Accuracy Automation Classification Discriminant analysis Frontal lobe functional near-infrared spectroscopy hemoglobin response function I.R. radiation Infrared spectroscopy Life Sciences & Biomedicine Light emitting diodes machine learning technique Neuroimaging Neurosciences Neurosciences & Neurology Odor Olfaction Olfactory stimuli Physiology Portable computers Prefrontal cortex Science & Technology Sensors Signal processing Software Spectrum analysis support vector machine Support vector machines |
title | Classification of Prefrontal Cortex Activity Based on Functional Near-Infrared Spectroscopy Data upon Olfactory Stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Prefrontal%20Cortex%20Activity%20Based%20on%20Functional%20Near-Infrared%20Spectroscopy%20Data%20upon%20Olfactory%20Stimulation&rft.jtitle=Brain%20sciences&rft.au=Chen,%20Cheng-Hsuan&rft.date=2021-05-26&rft.volume=11&rft.issue=6&rft.spage=701&rft.pages=701-&rft.artnum=701&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci11060701&rft_dat=%3Cproquest_pubme%3E2536492258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544612693&rft_id=info:pmid/34073372&rft_doaj_id=oai_doaj_org_article_bce511a6b46f45e3827e1762ff50f640&rfr_iscdi=true |