Identification of marker genes in Alzheimer's disease using a machine-learning model
Alzheimer's Disease (AD) is one of the most common causes of dementia, mostly affecting the elderly population. Currently, there is no proper diagnostic tool or method available for the detection of AD. The present study used two distinct data sets of AD genes, which could be potential biomarke...
Gespeichert in:
Veröffentlicht in: | Bioinformation 2021-02, Vol.17 (2), p.348-355 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 2 |
container_start_page | 348 |
container_title | Bioinformation |
container_volume | 17 |
creator | Madar, Inamul Hasan Sultan, Ghazala Tayubi, Iftikhar Aslam Hasan, Atif Noorul Pahi, Bandana Rai, Anjali Sivanandan, Pravitha Kasu Loganathan, Tamizhini Begum, Mahamuda Rai, Sneha |
description | Alzheimer's Disease (AD) is one of the most common causes of dementia, mostly affecting the elderly population. Currently, there is no proper diagnostic tool or method available for the detection of AD. The present study used two distinct data sets of AD genes, which could be potential biomarkers in the diagnosis. The differentially expressed genes (DEGs) curated from both datasets were used for machine learning classification, tissue expression annotation and co-expression analysis. Further, CNPY3, GPR84, HIST1H2AB, HIST1H2AE, IFNAR1, LMO3, MYO18A, N4BP2L1, PML, SLC4A4, ST8SIA4, TLE1 and N4BP2L1 were identified as highly significant DEGs and exhibited co-expression with other query genes. Moreover, a tissue expression study found that these genes are also expressed in the brain tissue. In addition to the earlier studies for marker gene identification, we have considered a different set of machine learning classifiers to improve the accuracy rate from the analysis. Amongst all the six classification algorithms, J48 emerged as the best classifier, which could be used for differentiating healthy and diseased samples. SMO/SVM and Logit Boost further followed J48 to achieve the classification accuracy. |
doi_str_mv | 10.6026/97320630017348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8225597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498423262</sourcerecordid><originalsourceid>FETCH-LOGICAL-p224t-8f581dca0d4295067c65ad0e188fd1640b9ad8205d4baea799d767432f96f77c3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRbK1ePUrAg16im_3ei1CKH4WCl3oO2-yk3ZpsajYR9K93i1Wqpxne_HjMewidZ_hGYCJutaQEC4pxJilTB2iIo5JupcO9fYBOQlhjzDIp-TEaUEYoo5oP0XxqwXeudIXpXOOTpkxq075CmyzBQ0icT8bV5wpcDe1VSKwLYAIkfXB-mZjIFivnIa3AtH4r1Y2F6hQdlaYKcLabI_TycD-fPKWz58fpZDxLN4SwLlUlV5ktDLaMaI6FLAQ3FkOmVGkzwfBCG6sI5pYtDBiptZVCMkpKLUopCzpCd9--m35Rgy1iktZU-aZ1McNH3hiX_714t8qXzXuuCOE8ljNC1zuDtnnrIXR57UIBVWU8NH3ICWdaKCWkiujlP3Td9K2P8XLCtIqFEkEidbH_0e8rP4XTL49ognc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498423262</pqid></control><display><type>article</type><title>Identification of marker genes in Alzheimer's disease using a machine-learning model</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Madar, Inamul Hasan ; Sultan, Ghazala ; Tayubi, Iftikhar Aslam ; Hasan, Atif Noorul ; Pahi, Bandana ; Rai, Anjali ; Sivanandan, Pravitha Kasu ; Loganathan, Tamizhini ; Begum, Mahamuda ; Rai, Sneha</creator><creatorcontrib>Madar, Inamul Hasan ; Sultan, Ghazala ; Tayubi, Iftikhar Aslam ; Hasan, Atif Noorul ; Pahi, Bandana ; Rai, Anjali ; Sivanandan, Pravitha Kasu ; Loganathan, Tamizhini ; Begum, Mahamuda ; Rai, Sneha</creatorcontrib><description>Alzheimer's Disease (AD) is one of the most common causes of dementia, mostly affecting the elderly population. Currently, there is no proper diagnostic tool or method available for the detection of AD. The present study used two distinct data sets of AD genes, which could be potential biomarkers in the diagnosis. The differentially expressed genes (DEGs) curated from both datasets were used for machine learning classification, tissue expression annotation and co-expression analysis. Further, CNPY3, GPR84, HIST1H2AB, HIST1H2AE, IFNAR1, LMO3, MYO18A, N4BP2L1, PML, SLC4A4, ST8SIA4, TLE1 and N4BP2L1 were identified as highly significant DEGs and exhibited co-expression with other query genes. Moreover, a tissue expression study found that these genes are also expressed in the brain tissue. In addition to the earlier studies for marker gene identification, we have considered a different set of machine learning classifiers to improve the accuracy rate from the analysis. Amongst all the six classification algorithms, J48 emerged as the best classifier, which could be used for differentiating healthy and diseased samples. SMO/SVM and Logit Boost further followed J48 to achieve the classification accuracy.</description><identifier>ISSN: 0973-2063</identifier><identifier>ISSN: 0973-8894</identifier><identifier>EISSN: 0973-2063</identifier><identifier>DOI: 10.6026/97320630017348</identifier><identifier>PMID: 34234395</identifier><language>eng</language><publisher>Singapore: Biomedical Informatics</publisher><subject>Algorithms ; Alzheimer's disease ; Annotations ; Biomarkers ; Classification ; Classifiers ; Dementia disorders ; Gene expression ; Genes ; Learning algorithms ; Machine learning ; Neurodegenerative diseases ; Older people ; Tissues</subject><ispartof>Bioinformation, 2021-02, Vol.17 (2), p.348-355</ispartof><rights>2021 Biomedical Informatics.</rights><rights>Copyright Biomedical Informatics Feb 2021</rights><rights>2021 Biomedical Informatics 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225597/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225597/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34234395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madar, Inamul Hasan</creatorcontrib><creatorcontrib>Sultan, Ghazala</creatorcontrib><creatorcontrib>Tayubi, Iftikhar Aslam</creatorcontrib><creatorcontrib>Hasan, Atif Noorul</creatorcontrib><creatorcontrib>Pahi, Bandana</creatorcontrib><creatorcontrib>Rai, Anjali</creatorcontrib><creatorcontrib>Sivanandan, Pravitha Kasu</creatorcontrib><creatorcontrib>Loganathan, Tamizhini</creatorcontrib><creatorcontrib>Begum, Mahamuda</creatorcontrib><creatorcontrib>Rai, Sneha</creatorcontrib><title>Identification of marker genes in Alzheimer's disease using a machine-learning model</title><title>Bioinformation</title><addtitle>Bioinformation</addtitle><description>Alzheimer's Disease (AD) is one of the most common causes of dementia, mostly affecting the elderly population. Currently, there is no proper diagnostic tool or method available for the detection of AD. The present study used two distinct data sets of AD genes, which could be potential biomarkers in the diagnosis. The differentially expressed genes (DEGs) curated from both datasets were used for machine learning classification, tissue expression annotation and co-expression analysis. Further, CNPY3, GPR84, HIST1H2AB, HIST1H2AE, IFNAR1, LMO3, MYO18A, N4BP2L1, PML, SLC4A4, ST8SIA4, TLE1 and N4BP2L1 were identified as highly significant DEGs and exhibited co-expression with other query genes. Moreover, a tissue expression study found that these genes are also expressed in the brain tissue. In addition to the earlier studies for marker gene identification, we have considered a different set of machine learning classifiers to improve the accuracy rate from the analysis. Amongst all the six classification algorithms, J48 emerged as the best classifier, which could be used for differentiating healthy and diseased samples. SMO/SVM and Logit Boost further followed J48 to achieve the classification accuracy.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Annotations</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Dementia disorders</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neurodegenerative diseases</subject><subject>Older people</subject><subject>Tissues</subject><issn>0973-2063</issn><issn>0973-8894</issn><issn>0973-2063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxRdRbK1ePUrAg16im_3ei1CKH4WCl3oO2-yk3ZpsajYR9K93i1Wqpxne_HjMewidZ_hGYCJutaQEC4pxJilTB2iIo5JupcO9fYBOQlhjzDIp-TEaUEYoo5oP0XxqwXeudIXpXOOTpkxq075CmyzBQ0icT8bV5wpcDe1VSKwLYAIkfXB-mZjIFivnIa3AtH4r1Y2F6hQdlaYKcLabI_TycD-fPKWz58fpZDxLN4SwLlUlV5ktDLaMaI6FLAQ3FkOmVGkzwfBCG6sI5pYtDBiptZVCMkpKLUopCzpCd9--m35Rgy1iktZU-aZ1McNH3hiX_714t8qXzXuuCOE8ljNC1zuDtnnrIXR57UIBVWU8NH3ICWdaKCWkiujlP3Td9K2P8XLCtIqFEkEidbH_0e8rP4XTL49ognc</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Madar, Inamul Hasan</creator><creator>Sultan, Ghazala</creator><creator>Tayubi, Iftikhar Aslam</creator><creator>Hasan, Atif Noorul</creator><creator>Pahi, Bandana</creator><creator>Rai, Anjali</creator><creator>Sivanandan, Pravitha Kasu</creator><creator>Loganathan, Tamizhini</creator><creator>Begum, Mahamuda</creator><creator>Rai, Sneha</creator><general>Biomedical Informatics</general><scope>NPM</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210201</creationdate><title>Identification of marker genes in Alzheimer's disease using a machine-learning model</title><author>Madar, Inamul Hasan ; Sultan, Ghazala ; Tayubi, Iftikhar Aslam ; Hasan, Atif Noorul ; Pahi, Bandana ; Rai, Anjali ; Sivanandan, Pravitha Kasu ; Loganathan, Tamizhini ; Begum, Mahamuda ; Rai, Sneha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p224t-8f581dca0d4295067c65ad0e188fd1640b9ad8205d4baea799d767432f96f77c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Annotations</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Dementia disorders</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neurodegenerative diseases</topic><topic>Older people</topic><topic>Tissues</topic><toplevel>online_resources</toplevel><creatorcontrib>Madar, Inamul Hasan</creatorcontrib><creatorcontrib>Sultan, Ghazala</creatorcontrib><creatorcontrib>Tayubi, Iftikhar Aslam</creatorcontrib><creatorcontrib>Hasan, Atif Noorul</creatorcontrib><creatorcontrib>Pahi, Bandana</creatorcontrib><creatorcontrib>Rai, Anjali</creatorcontrib><creatorcontrib>Sivanandan, Pravitha Kasu</creatorcontrib><creatorcontrib>Loganathan, Tamizhini</creatorcontrib><creatorcontrib>Begum, Mahamuda</creatorcontrib><creatorcontrib>Rai, Sneha</creatorcontrib><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madar, Inamul Hasan</au><au>Sultan, Ghazala</au><au>Tayubi, Iftikhar Aslam</au><au>Hasan, Atif Noorul</au><au>Pahi, Bandana</au><au>Rai, Anjali</au><au>Sivanandan, Pravitha Kasu</au><au>Loganathan, Tamizhini</au><au>Begum, Mahamuda</au><au>Rai, Sneha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of marker genes in Alzheimer's disease using a machine-learning model</atitle><jtitle>Bioinformation</jtitle><addtitle>Bioinformation</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>348</spage><epage>355</epage><pages>348-355</pages><issn>0973-2063</issn><issn>0973-8894</issn><eissn>0973-2063</eissn><abstract>Alzheimer's Disease (AD) is one of the most common causes of dementia, mostly affecting the elderly population. Currently, there is no proper diagnostic tool or method available for the detection of AD. The present study used two distinct data sets of AD genes, which could be potential biomarkers in the diagnosis. The differentially expressed genes (DEGs) curated from both datasets were used for machine learning classification, tissue expression annotation and co-expression analysis. Further, CNPY3, GPR84, HIST1H2AB, HIST1H2AE, IFNAR1, LMO3, MYO18A, N4BP2L1, PML, SLC4A4, ST8SIA4, TLE1 and N4BP2L1 were identified as highly significant DEGs and exhibited co-expression with other query genes. Moreover, a tissue expression study found that these genes are also expressed in the brain tissue. In addition to the earlier studies for marker gene identification, we have considered a different set of machine learning classifiers to improve the accuracy rate from the analysis. Amongst all the six classification algorithms, J48 emerged as the best classifier, which could be used for differentiating healthy and diseased samples. SMO/SVM and Logit Boost further followed J48 to achieve the classification accuracy.</abstract><cop>Singapore</cop><pub>Biomedical Informatics</pub><pmid>34234395</pmid><doi>10.6026/97320630017348</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-2063 |
ispartof | Bioinformation, 2021-02, Vol.17 (2), p.348-355 |
issn | 0973-2063 0973-8894 0973-2063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8225597 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Algorithms Alzheimer's disease Annotations Biomarkers Classification Classifiers Dementia disorders Gene expression Genes Learning algorithms Machine learning Neurodegenerative diseases Older people Tissues |
title | Identification of marker genes in Alzheimer's disease using a machine-learning model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20marker%20genes%20in%20Alzheimer's%20disease%20using%20a%20machine-learning%20model&rft.jtitle=Bioinformation&rft.au=Madar,%20Inamul%20Hasan&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=348&rft.epage=355&rft.pages=348-355&rft.issn=0973-2063&rft.eissn=0973-2063&rft_id=info:doi/10.6026/97320630017348&rft_dat=%3Cproquest_pubme%3E2498423262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498423262&rft_id=info:pmid/34234395&rfr_iscdi=true |