Deep learning automated pathology in ex vivo microscopy

Standard histopathology is currently the gold standard for assessment of margin status in Mohs surgical removal of skin cancer. Ex vivo confocal microscopy (XVM) is potentially faster, less costly and inherently 3D/digital compared to standard histopathology. Despite these advantages, XVM use is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2021-06, Vol.12 (6), p.3103-3116
Hauptverfasser: Combalia, Marc, Garcia, Sergio, Malvehy, Josep, Puig, Susana, Mülberger, Alba Guembe, Browning, James, Garcet, Sandra, Krueger, James G., Lish, Samantha R., Lax, Rivka, Ren, Jeannie, Stevenson, Mary, Doudican, Nicole, Carucci, John A., Jain, Manu, White, Kevin, Rakos, Jaroslav, Gareau, Daniel S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3116
container_issue 6
container_start_page 3103
container_title Biomedical optics express
container_volume 12
creator Combalia, Marc
Garcia, Sergio
Malvehy, Josep
Puig, Susana
Mülberger, Alba Guembe
Browning, James
Garcet, Sandra
Krueger, James G.
Lish, Samantha R.
Lax, Rivka
Ren, Jeannie
Stevenson, Mary
Doudican, Nicole
Carucci, John A.
Jain, Manu
White, Kevin
Rakos, Jaroslav
Gareau, Daniel S.
description Standard histopathology is currently the gold standard for assessment of margin status in Mohs surgical removal of skin cancer. Ex vivo confocal microscopy (XVM) is potentially faster, less costly and inherently 3D/digital compared to standard histopathology. Despite these advantages, XVM use is not widespread due, in part, to the need for pathologists to retrain to interpret XVM images. We developed artificial intelligence (AI)-driven XVM pathology by implementing algorithms that render intuitive XVM pathology images identical to standard histopathology and produce automated tumor positivity maps. XVM images have fluorescence labeling of cellular and nuclear biology on the background of endogenous (unstained) reflectance contrast as a grounding counter-contrast. XVM images of 26 surgical excision specimens discarded after Mohs micrographic surgery were used to develop an XVM data pipeline with 4 stages: flattening, colorizing, enhancement and automated diagnosis. The first two stages were novel, deterministic image processing algorithms, and the second two were AI algorithms. Diagnostic sensitivity and specificity were calculated for basal cell carcinoma detection as proof of principal for the XVM image processing pipeline. The resulting diagnostic readouts mimicked the appearance of histopathology and found tumor positivity that required first collapsing the confocal stack to a 2D image optimized for cellular fluorescence contrast, then a dark field-to-bright field colorizing transformation, then either an AI image transformation for visual inspection or an AI diagnostic binary image segmentation of tumor obtaining a diagnostic sensitivity and specificity of 88% and 91% respectively. These results show that video-assisted micrographic XVM pathology could feasibly aid margin status determination in micrographic surgery of skin cancer.
doi_str_mv 10.1364/BOE.422168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548629362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-af9a7543bf4c6e261860f4bca0dc4d4241d42ae1461a4c9c09758a661abb68b13</originalsourceid><addsrcrecordid>eNpVUE1Lw0AQXUSxpfbiL8hRhNT9zuYiaFs_oNCLnpfJZtOuJNmYTYr996a2iM5hPpg3b3gPoWuCZ4RJfve4Xs44pUSqMzSmRMg4wUqc_-lHaBrCBx6C8wQzdYlG7OeCqzFKFtY2UWmhrV29iaDvfAWdzaMGuq0v_WYfuTqyX9HO7XxUOdP6YHyzv0IXBZTBTk91gt6flm_zl3i1fn6dP6xiw4ToYihSSARnWcGNtFQSJXHBMwM4NzznlJMhgSVcEuAmNThNhAI5TFkmVUbYBN0feZs-q2xubN21UOqmdRW0e-3B6f-b2m31xu-0GhSmUgwENyeC1n_2NnS6csHYsoTa-j5oKriSNGWSDtDbI_QgMrS2-H1DsD6YrQez9dFs9g0RznBF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548629362</pqid></control><display><type>article</type><title>Deep learning automated pathology in ex vivo microscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Combalia, Marc ; Garcia, Sergio ; Malvehy, Josep ; Puig, Susana ; Mülberger, Alba Guembe ; Browning, James ; Garcet, Sandra ; Krueger, James G. ; Lish, Samantha R. ; Lax, Rivka ; Ren, Jeannie ; Stevenson, Mary ; Doudican, Nicole ; Carucci, John A. ; Jain, Manu ; White, Kevin ; Rakos, Jaroslav ; Gareau, Daniel S.</creator><creatorcontrib>Combalia, Marc ; Garcia, Sergio ; Malvehy, Josep ; Puig, Susana ; Mülberger, Alba Guembe ; Browning, James ; Garcet, Sandra ; Krueger, James G. ; Lish, Samantha R. ; Lax, Rivka ; Ren, Jeannie ; Stevenson, Mary ; Doudican, Nicole ; Carucci, John A. ; Jain, Manu ; White, Kevin ; Rakos, Jaroslav ; Gareau, Daniel S.</creatorcontrib><description>Standard histopathology is currently the gold standard for assessment of margin status in Mohs surgical removal of skin cancer. Ex vivo confocal microscopy (XVM) is potentially faster, less costly and inherently 3D/digital compared to standard histopathology. Despite these advantages, XVM use is not widespread due, in part, to the need for pathologists to retrain to interpret XVM images. We developed artificial intelligence (AI)-driven XVM pathology by implementing algorithms that render intuitive XVM pathology images identical to standard histopathology and produce automated tumor positivity maps. XVM images have fluorescence labeling of cellular and nuclear biology on the background of endogenous (unstained) reflectance contrast as a grounding counter-contrast. XVM images of 26 surgical excision specimens discarded after Mohs micrographic surgery were used to develop an XVM data pipeline with 4 stages: flattening, colorizing, enhancement and automated diagnosis. The first two stages were novel, deterministic image processing algorithms, and the second two were AI algorithms. Diagnostic sensitivity and specificity were calculated for basal cell carcinoma detection as proof of principal for the XVM image processing pipeline. The resulting diagnostic readouts mimicked the appearance of histopathology and found tumor positivity that required first collapsing the confocal stack to a 2D image optimized for cellular fluorescence contrast, then a dark field-to-bright field colorizing transformation, then either an AI image transformation for visual inspection or an AI diagnostic binary image segmentation of tumor obtaining a diagnostic sensitivity and specificity of 88% and 91% respectively. These results show that video-assisted micrographic XVM pathology could feasibly aid margin status determination in micrographic surgery of skin cancer.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.422168</identifier><identifier>PMID: 34221648</identifier><language>eng</language><publisher>Optical Society of America</publisher><ispartof>Biomedical optics express, 2021-06, Vol.12 (6), p.3103-3116</ispartof><rights>2021 Optical Society of America under the terms of the 2021 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-af9a7543bf4c6e261860f4bca0dc4d4241d42ae1461a4c9c09758a661abb68b13</citedby><cites>FETCH-LOGICAL-c355t-af9a7543bf4c6e261860f4bca0dc4d4241d42ae1461a4c9c09758a661abb68b13</cites><orcidid>0000-0002-9759-1198 ; 0000-0002-6035-0825 ; 0000-0001-5039-8705 ; 0000-0003-4331-4707 ; 0000-0002-6911-8352 ; 0000-0003-1337-9745 ; 0000-0003-0378-1175 ; 0000-0002-2796-3996 ; 0000-0003-3677-5265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221965/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221965/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Combalia, Marc</creatorcontrib><creatorcontrib>Garcia, Sergio</creatorcontrib><creatorcontrib>Malvehy, Josep</creatorcontrib><creatorcontrib>Puig, Susana</creatorcontrib><creatorcontrib>Mülberger, Alba Guembe</creatorcontrib><creatorcontrib>Browning, James</creatorcontrib><creatorcontrib>Garcet, Sandra</creatorcontrib><creatorcontrib>Krueger, James G.</creatorcontrib><creatorcontrib>Lish, Samantha R.</creatorcontrib><creatorcontrib>Lax, Rivka</creatorcontrib><creatorcontrib>Ren, Jeannie</creatorcontrib><creatorcontrib>Stevenson, Mary</creatorcontrib><creatorcontrib>Doudican, Nicole</creatorcontrib><creatorcontrib>Carucci, John A.</creatorcontrib><creatorcontrib>Jain, Manu</creatorcontrib><creatorcontrib>White, Kevin</creatorcontrib><creatorcontrib>Rakos, Jaroslav</creatorcontrib><creatorcontrib>Gareau, Daniel S.</creatorcontrib><title>Deep learning automated pathology in ex vivo microscopy</title><title>Biomedical optics express</title><description>Standard histopathology is currently the gold standard for assessment of margin status in Mohs surgical removal of skin cancer. Ex vivo confocal microscopy (XVM) is potentially faster, less costly and inherently 3D/digital compared to standard histopathology. Despite these advantages, XVM use is not widespread due, in part, to the need for pathologists to retrain to interpret XVM images. We developed artificial intelligence (AI)-driven XVM pathology by implementing algorithms that render intuitive XVM pathology images identical to standard histopathology and produce automated tumor positivity maps. XVM images have fluorescence labeling of cellular and nuclear biology on the background of endogenous (unstained) reflectance contrast as a grounding counter-contrast. XVM images of 26 surgical excision specimens discarded after Mohs micrographic surgery were used to develop an XVM data pipeline with 4 stages: flattening, colorizing, enhancement and automated diagnosis. The first two stages were novel, deterministic image processing algorithms, and the second two were AI algorithms. Diagnostic sensitivity and specificity were calculated for basal cell carcinoma detection as proof of principal for the XVM image processing pipeline. The resulting diagnostic readouts mimicked the appearance of histopathology and found tumor positivity that required first collapsing the confocal stack to a 2D image optimized for cellular fluorescence contrast, then a dark field-to-bright field colorizing transformation, then either an AI image transformation for visual inspection or an AI diagnostic binary image segmentation of tumor obtaining a diagnostic sensitivity and specificity of 88% and 91% respectively. These results show that video-assisted micrographic XVM pathology could feasibly aid margin status determination in micrographic surgery of skin cancer.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUE1Lw0AQXUSxpfbiL8hRhNT9zuYiaFs_oNCLnpfJZtOuJNmYTYr996a2iM5hPpg3b3gPoWuCZ4RJfve4Xs44pUSqMzSmRMg4wUqc_-lHaBrCBx6C8wQzdYlG7OeCqzFKFtY2UWmhrV29iaDvfAWdzaMGuq0v_WYfuTqyX9HO7XxUOdP6YHyzv0IXBZTBTk91gt6flm_zl3i1fn6dP6xiw4ToYihSSARnWcGNtFQSJXHBMwM4NzznlJMhgSVcEuAmNThNhAI5TFkmVUbYBN0feZs-q2xubN21UOqmdRW0e-3B6f-b2m31xu-0GhSmUgwENyeC1n_2NnS6csHYsoTa-j5oKriSNGWSDtDbI_QgMrS2-H1DsD6YrQez9dFs9g0RznBF</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Combalia, Marc</creator><creator>Garcia, Sergio</creator><creator>Malvehy, Josep</creator><creator>Puig, Susana</creator><creator>Mülberger, Alba Guembe</creator><creator>Browning, James</creator><creator>Garcet, Sandra</creator><creator>Krueger, James G.</creator><creator>Lish, Samantha R.</creator><creator>Lax, Rivka</creator><creator>Ren, Jeannie</creator><creator>Stevenson, Mary</creator><creator>Doudican, Nicole</creator><creator>Carucci, John A.</creator><creator>Jain, Manu</creator><creator>White, Kevin</creator><creator>Rakos, Jaroslav</creator><creator>Gareau, Daniel S.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9759-1198</orcidid><orcidid>https://orcid.org/0000-0002-6035-0825</orcidid><orcidid>https://orcid.org/0000-0001-5039-8705</orcidid><orcidid>https://orcid.org/0000-0003-4331-4707</orcidid><orcidid>https://orcid.org/0000-0002-6911-8352</orcidid><orcidid>https://orcid.org/0000-0003-1337-9745</orcidid><orcidid>https://orcid.org/0000-0003-0378-1175</orcidid><orcidid>https://orcid.org/0000-0002-2796-3996</orcidid><orcidid>https://orcid.org/0000-0003-3677-5265</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep learning automated pathology in ex vivo microscopy</title><author>Combalia, Marc ; Garcia, Sergio ; Malvehy, Josep ; Puig, Susana ; Mülberger, Alba Guembe ; Browning, James ; Garcet, Sandra ; Krueger, James G. ; Lish, Samantha R. ; Lax, Rivka ; Ren, Jeannie ; Stevenson, Mary ; Doudican, Nicole ; Carucci, John A. ; Jain, Manu ; White, Kevin ; Rakos, Jaroslav ; Gareau, Daniel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-af9a7543bf4c6e261860f4bca0dc4d4241d42ae1461a4c9c09758a661abb68b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combalia, Marc</creatorcontrib><creatorcontrib>Garcia, Sergio</creatorcontrib><creatorcontrib>Malvehy, Josep</creatorcontrib><creatorcontrib>Puig, Susana</creatorcontrib><creatorcontrib>Mülberger, Alba Guembe</creatorcontrib><creatorcontrib>Browning, James</creatorcontrib><creatorcontrib>Garcet, Sandra</creatorcontrib><creatorcontrib>Krueger, James G.</creatorcontrib><creatorcontrib>Lish, Samantha R.</creatorcontrib><creatorcontrib>Lax, Rivka</creatorcontrib><creatorcontrib>Ren, Jeannie</creatorcontrib><creatorcontrib>Stevenson, Mary</creatorcontrib><creatorcontrib>Doudican, Nicole</creatorcontrib><creatorcontrib>Carucci, John A.</creatorcontrib><creatorcontrib>Jain, Manu</creatorcontrib><creatorcontrib>White, Kevin</creatorcontrib><creatorcontrib>Rakos, Jaroslav</creatorcontrib><creatorcontrib>Gareau, Daniel S.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Combalia, Marc</au><au>Garcia, Sergio</au><au>Malvehy, Josep</au><au>Puig, Susana</au><au>Mülberger, Alba Guembe</au><au>Browning, James</au><au>Garcet, Sandra</au><au>Krueger, James G.</au><au>Lish, Samantha R.</au><au>Lax, Rivka</au><au>Ren, Jeannie</au><au>Stevenson, Mary</au><au>Doudican, Nicole</au><au>Carucci, John A.</au><au>Jain, Manu</au><au>White, Kevin</au><au>Rakos, Jaroslav</au><au>Gareau, Daniel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning automated pathology in ex vivo microscopy</atitle><jtitle>Biomedical optics express</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>12</volume><issue>6</issue><spage>3103</spage><epage>3116</epage><pages>3103-3116</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Standard histopathology is currently the gold standard for assessment of margin status in Mohs surgical removal of skin cancer. Ex vivo confocal microscopy (XVM) is potentially faster, less costly and inherently 3D/digital compared to standard histopathology. Despite these advantages, XVM use is not widespread due, in part, to the need for pathologists to retrain to interpret XVM images. We developed artificial intelligence (AI)-driven XVM pathology by implementing algorithms that render intuitive XVM pathology images identical to standard histopathology and produce automated tumor positivity maps. XVM images have fluorescence labeling of cellular and nuclear biology on the background of endogenous (unstained) reflectance contrast as a grounding counter-contrast. XVM images of 26 surgical excision specimens discarded after Mohs micrographic surgery were used to develop an XVM data pipeline with 4 stages: flattening, colorizing, enhancement and automated diagnosis. The first two stages were novel, deterministic image processing algorithms, and the second two were AI algorithms. Diagnostic sensitivity and specificity were calculated for basal cell carcinoma detection as proof of principal for the XVM image processing pipeline. The resulting diagnostic readouts mimicked the appearance of histopathology and found tumor positivity that required first collapsing the confocal stack to a 2D image optimized for cellular fluorescence contrast, then a dark field-to-bright field colorizing transformation, then either an AI image transformation for visual inspection or an AI diagnostic binary image segmentation of tumor obtaining a diagnostic sensitivity and specificity of 88% and 91% respectively. These results show that video-assisted micrographic XVM pathology could feasibly aid margin status determination in micrographic surgery of skin cancer.</abstract><pub>Optical Society of America</pub><pmid>34221648</pmid><doi>10.1364/BOE.422168</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9759-1198</orcidid><orcidid>https://orcid.org/0000-0002-6035-0825</orcidid><orcidid>https://orcid.org/0000-0001-5039-8705</orcidid><orcidid>https://orcid.org/0000-0003-4331-4707</orcidid><orcidid>https://orcid.org/0000-0002-6911-8352</orcidid><orcidid>https://orcid.org/0000-0003-1337-9745</orcidid><orcidid>https://orcid.org/0000-0003-0378-1175</orcidid><orcidid>https://orcid.org/0000-0002-2796-3996</orcidid><orcidid>https://orcid.org/0000-0003-3677-5265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2021-06, Vol.12 (6), p.3103-3116
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221965
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Deep learning automated pathology in ex vivo microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20automated%20pathology%20in%20ex%20vivo%20microscopy&rft.jtitle=Biomedical%20optics%20express&rft.au=Combalia,%20Marc&rft.date=2021-06-01&rft.volume=12&rft.issue=6&rft.spage=3103&rft.epage=3116&rft.pages=3103-3116&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.422168&rft_dat=%3Cproquest_pubme%3E2548629362%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548629362&rft_id=info:pmid/34221648&rfr_iscdi=true