SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches
Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the diseas...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2021-06, Vol.41 (25), p.5338-5349 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5349 |
---|---|
container_issue | 25 |
container_start_page | 5338 |
container_title | The Journal of neuroscience |
container_volume | 41 |
creator | Swain, Olivia Romano, Sofia K Miryala, Ritika Tsai, Jocelyn Parikh, Vinnie Umanah, George K E |
description | Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed. |
doi_str_mv | 10.1523/JNEUROSCI.3188-20.2021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551716112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-c39fbf8528a17337dae434affcf2588cae8fd53836522128dd9f58b27760c6e33</originalsourceid><addsrcrecordid>eNpVkd1OGzEQha2qCFLgFaKVer2pPbbX3l5UilYUUoUfJYRby_HazaJkvbV3kXh7nAIRXI00c-bM0XwIjQmeEA70x5-bi9XidlnNJpRImQOeAAbyBY3StMyBYfIVjTAInBdMsBP0LcZHjLHARByjE8pIAYKJEVLL6WKZV_4hh-zGDsG3epvN2icdG99muq2zyu-6bWN0nxrxZ3bne9v2TVJdW7PRbRN38b_ufmOD7uzQNyabdl3w2mxsPENHTm-jPX-rp2j1--K-usrnt5ezajrPDSt5nxtaurWTHKQmglJRa8so084ZB1xKo610NaeSFhyAgKzr0nG5BiEKbApL6Sn69erbDeudrU3KGPRWdaHZ6fCsvG7U50nbbNRf_6Rk8uMlSwbf3wyC_zfY2KtHP4T0jaiAcyJIQQgkVfGqMsHHGKw7XCBY7cGoAxi1B6MAqz2YtDj-mO-w9k6CvgDD8IuN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551716112</pqid></control><display><type>article</type><title>SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Swain, Olivia ; Romano, Sofia K ; Miryala, Ritika ; Tsai, Jocelyn ; Parikh, Vinnie ; Umanah, George K E</creator><creatorcontrib>Swain, Olivia ; Romano, Sofia K ; Miryala, Ritika ; Tsai, Jocelyn ; Parikh, Vinnie ; Umanah, George K E</creatorcontrib><description>Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3188-20.2021</identifier><identifier>PMID: 34162747</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Antiviral agents ; Autopsies ; Complications ; Coronaviruses ; COVID-19 ; COVID-19 - complications ; COVID-19 - metabolism ; COVID-19 - pathology ; COVID-19 - virology ; COVID-19 Drug Treatment ; Diabetes mellitus ; Disease transmission ; Drug delivery ; Health risks ; Humans ; Immune response ; Immune system ; Immunodeficiency ; Immunosuppressive agents ; Infections ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - virology ; Nervous System Diseases - drug therapy ; Nervous System Diseases - metabolism ; Nervous System Diseases - pathology ; Nervous System Diseases - virology ; Neurological complications ; Neurons - metabolism ; Neurons - virology ; Pandemics ; Patients ; Post-Acute COVID-19 Syndrome ; Rapamycin ; Respiratory diseases ; SARS-CoV-2 - pathogenicity ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Signal transduction ; Signaling ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Viewpoints ; Viral diseases</subject><ispartof>The Journal of neuroscience, 2021-06, Vol.41 (25), p.5338-5349</ispartof><rights>Copyright © 2021 the authors.</rights><rights>Copyright Society for Neuroscience Jun 23, 2021</rights><rights>Copyright © 2021 the authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-c39fbf8528a17337dae434affcf2588cae8fd53836522128dd9f58b27760c6e33</citedby><cites>FETCH-LOGICAL-c495t-c39fbf8528a17337dae434affcf2588cae8fd53836522128dd9f58b27760c6e33</cites><orcidid>0000-0003-4623-3953 ; 0000-0002-1506-6139 ; 0000-0001-6140-1084 ; 0000-0001-5977-9192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221594/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221594/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34162747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swain, Olivia</creatorcontrib><creatorcontrib>Romano, Sofia K</creatorcontrib><creatorcontrib>Miryala, Ritika</creatorcontrib><creatorcontrib>Tsai, Jocelyn</creatorcontrib><creatorcontrib>Parikh, Vinnie</creatorcontrib><creatorcontrib>Umanah, George K E</creatorcontrib><title>SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.</description><subject>Animals</subject><subject>Antiviral agents</subject><subject>Autopsies</subject><subject>Complications</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - complications</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - pathology</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Drug Treatment</subject><subject>Diabetes mellitus</subject><subject>Disease transmission</subject><subject>Drug delivery</subject><subject>Health risks</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunodeficiency</subject><subject>Immunosuppressive agents</subject><subject>Infections</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - virology</subject><subject>Nervous System Diseases - drug therapy</subject><subject>Nervous System Diseases - metabolism</subject><subject>Nervous System Diseases - pathology</subject><subject>Nervous System Diseases - virology</subject><subject>Neurological complications</subject><subject>Neurons - metabolism</subject><subject>Neurons - virology</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Post-Acute COVID-19 Syndrome</subject><subject>Rapamycin</subject><subject>Respiratory diseases</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Viewpoints</subject><subject>Viral diseases</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1OGzEQha2qCFLgFaKVer2pPbbX3l5UilYUUoUfJYRby_HazaJkvbV3kXh7nAIRXI00c-bM0XwIjQmeEA70x5-bi9XidlnNJpRImQOeAAbyBY3StMyBYfIVjTAInBdMsBP0LcZHjLHARByjE8pIAYKJEVLL6WKZV_4hh-zGDsG3epvN2icdG99muq2zyu-6bWN0nxrxZ3bne9v2TVJdW7PRbRN38b_ufmOD7uzQNyabdl3w2mxsPENHTm-jPX-rp2j1--K-usrnt5ezajrPDSt5nxtaurWTHKQmglJRa8so084ZB1xKo610NaeSFhyAgKzr0nG5BiEKbApL6Sn69erbDeudrU3KGPRWdaHZ6fCsvG7U50nbbNRf_6Rk8uMlSwbf3wyC_zfY2KtHP4T0jaiAcyJIQQgkVfGqMsHHGKw7XCBY7cGoAxi1B6MAqz2YtDj-mO-w9k6CvgDD8IuN</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Swain, Olivia</creator><creator>Romano, Sofia K</creator><creator>Miryala, Ritika</creator><creator>Tsai, Jocelyn</creator><creator>Parikh, Vinnie</creator><creator>Umanah, George K E</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4623-3953</orcidid><orcidid>https://orcid.org/0000-0002-1506-6139</orcidid><orcidid>https://orcid.org/0000-0001-6140-1084</orcidid><orcidid>https://orcid.org/0000-0001-5977-9192</orcidid></search><sort><creationdate>20210623</creationdate><title>SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches</title><author>Swain, Olivia ; Romano, Sofia K ; Miryala, Ritika ; Tsai, Jocelyn ; Parikh, Vinnie ; Umanah, George K E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-c39fbf8528a17337dae434affcf2588cae8fd53836522128dd9f58b27760c6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antiviral agents</topic><topic>Autopsies</topic><topic>Complications</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - complications</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - pathology</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Drug Treatment</topic><topic>Diabetes mellitus</topic><topic>Disease transmission</topic><topic>Drug delivery</topic><topic>Health risks</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunodeficiency</topic><topic>Immunosuppressive agents</topic><topic>Infections</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - virology</topic><topic>Nervous System Diseases - drug therapy</topic><topic>Nervous System Diseases - metabolism</topic><topic>Nervous System Diseases - pathology</topic><topic>Nervous System Diseases - virology</topic><topic>Neurological complications</topic><topic>Neurons - metabolism</topic><topic>Neurons - virology</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Post-Acute COVID-19 Syndrome</topic><topic>Rapamycin</topic><topic>Respiratory diseases</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Viewpoints</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swain, Olivia</creatorcontrib><creatorcontrib>Romano, Sofia K</creatorcontrib><creatorcontrib>Miryala, Ritika</creatorcontrib><creatorcontrib>Tsai, Jocelyn</creatorcontrib><creatorcontrib>Parikh, Vinnie</creatorcontrib><creatorcontrib>Umanah, George K E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swain, Olivia</au><au>Romano, Sofia K</au><au>Miryala, Ritika</au><au>Tsai, Jocelyn</au><au>Parikh, Vinnie</au><au>Umanah, George K E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2021-06-23</date><risdate>2021</risdate><volume>41</volume><issue>25</issue><spage>5338</spage><epage>5349</epage><pages>5338-5349</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>34162747</pmid><doi>10.1523/JNEUROSCI.3188-20.2021</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4623-3953</orcidid><orcidid>https://orcid.org/0000-0002-1506-6139</orcidid><orcidid>https://orcid.org/0000-0001-6140-1084</orcidid><orcidid>https://orcid.org/0000-0001-5977-9192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2021-06, Vol.41 (25), p.5338-5349 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221594 |
source | MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Animals Antiviral agents Autopsies Complications Coronaviruses COVID-19 COVID-19 - complications COVID-19 - metabolism COVID-19 - pathology COVID-19 - virology COVID-19 Drug Treatment Diabetes mellitus Disease transmission Drug delivery Health risks Humans Immune response Immune system Immunodeficiency Immunosuppressive agents Infections Mitochondria Mitochondria - metabolism Mitochondria - virology Nervous System Diseases - drug therapy Nervous System Diseases - metabolism Nervous System Diseases - pathology Nervous System Diseases - virology Neurological complications Neurons - metabolism Neurons - virology Pandemics Patients Post-Acute COVID-19 Syndrome Rapamycin Respiratory diseases SARS-CoV-2 - pathogenicity Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Signal transduction Signaling TOR protein TOR Serine-Threonine Kinases - metabolism Viewpoints Viral diseases |
title | SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20Neuronal%20Invasion%20and%20Complications:%20Potential%20Mechanisms%20and%20Therapeutic%20Approaches&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Swain,%20Olivia&rft.date=2021-06-23&rft.volume=41&rft.issue=25&rft.spage=5338&rft.epage=5349&rft.pages=5338-5349&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3188-20.2021&rft_dat=%3Cproquest_pubme%3E2551716112%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551716112&rft_id=info:pmid/34162747&rfr_iscdi=true |