eVITTA: a web-based visualization and inference toolbox for transcriptome analysis

Abstract Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-07, Vol.49 (W1), p.W207-W215
Hauptverfasser: Cheng, Xuanjin, Yan, Junran, Liu, Yongxing, Wang, Jiahe, Taubert, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date and species-specific information, and limited in their visualization options. Additionally, there is no systematic way to explore data stored in the largest transcriptome repository, NCBI GEO. To fill these gaps, we have developed eVITTA (easy Visualization and Inference Toolbox for Transcriptome Analysis; https://tau.cmmt.ubc.ca/eVITTA/). eVITTA provides modules for analysis and exploration of studies published in NCBI GEO (easyGEO), detailed molecular- and systems-level functional profiling (easyGSEA), and customizable comparisons among experimental groups (easyVizR). We tested eVITTA on transcriptomes of SARS-CoV-2 infected human nasopharyngeal swab samples, and identified a downregulation of olfactory signal transducers, in line with the clinical presentation of anosmia in COVID-19 patients. We also analyzed transcriptomes of Caenorhabditis elegans worms with disrupted S-adenosylmethionine metabolism, confirming activation of innate immune responses and feedback induction of one-carbon cycle genes. Collectively, eVITTA streamlines complex computational workflows into an accessible interface, thus filling the gap of an end-to-end platform capable of capturing both broad and granular changes in human and model organism transcriptomes. Graphical Abstract Graphical Abstract The eVITTA toolbox provides an integrated graphical workflow to analyze, interpret and compare transcriptome data either extracted from published studies on NCBI GEO, or generated from new profiling experiments.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkab366