Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection

The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important hu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-04, Vol.143 (15), p.5958-5966
Hauptverfasser: Outlaw, Victor K, Cheloha, Ross W, Jurgens, Eric M, Bovier, Francesca T, Zhu, Yun, Kreitler, Dale F, Harder, Olivia, Niewiesk, Stefan, Porotto, Matteo, Gellman, Samuel H, Moscona, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5966
container_issue 15
container_start_page 5958
container_title Journal of the American Chemical Society
container_volume 143
creator Outlaw, Victor K
Cheloha, Ross W
Jurgens, Eric M
Bovier, Francesca T
Zhu, Yun
Kreitler, Dale F
Harder, Olivia
Niewiesk, Stefan
Porotto, Matteo
Gellman, Samuel H
Moscona, Anne
description The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.
doi_str_mv 10.1021/jacs.1c01565
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8215719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509610663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</originalsourceid><addsrcrecordid>eNptkU1rHDEMhk1paTZpbz2HOfbQSS177PFcCiGkSSDQpbS9Go9Hs_Eya29tTyH99fGSzRfkJAk9eiX0EvIJ6AlQBl_XxqYTsBSEFG_IAgSjtQAm35IFpZTVrZL8gBymtC5lwxS8JwecKyaali5If-5XziNG51fVMoaMJmH9E5NL2fhcLXGb3YCpyqG68jeud7m6nDfGV0sTjfPjNKP_b6o_LpqpKnPbkuQQbws9os0u-A_k3WimhB_38Yj8_n7-6-yyvv5xcXV2el2bBtpcN32jBJVqoEBBAuA4QMv7kWIrZMcl763qqBxsp4yFtledZBxGoWBgjVXAj8i3e93t3G9wsOhzuUlvo9uYeKuDcfplx7sbvQr_tGIgWuiKwOe9QAx_Z0xZb1yyOE3GY5iTZoJ2EqiUvKBf7lEbQ0oRx8c1QPXOFr2zRe9tKfjx89Me4QcfnlbvptZhjr586nWtOwVWl4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509610663</pqid></control><display><type>article</type><title>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</title><source>ACS Publications</source><source>MEDLINE</source><creator>Outlaw, Victor K ; Cheloha, Ross W ; Jurgens, Eric M ; Bovier, Francesca T ; Zhu, Yun ; Kreitler, Dale F ; Harder, Olivia ; Niewiesk, Stefan ; Porotto, Matteo ; Gellman, Samuel H ; Moscona, Anne</creator><creatorcontrib>Outlaw, Victor K ; Cheloha, Ross W ; Jurgens, Eric M ; Bovier, Francesca T ; Zhu, Yun ; Kreitler, Dale F ; Harder, Olivia ; Niewiesk, Stefan ; Porotto, Matteo ; Gellman, Samuel H ; Moscona, Anne</creatorcontrib><description>The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c01565</identifier><identifier>PMID: 33825470</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Amino Acids - chemistry ; Amino Acids - metabolism ; Animals ; Antiviral Agents - chemistry ; Antiviral Agents - metabolism ; Antiviral Agents - pharmacology ; Cell Line ; Cholesterol - chemistry ; Drug Design ; Humans ; Lipopeptides - chemistry ; Lipopeptides - metabolism ; Lipopeptides - pharmacology ; Parainfluenza Virus 3, Human - drug effects ; Parainfluenza Virus 3, Human - isolation &amp; purification ; Protein Multimerization ; Rats ; Respiratory Tract Infections - pathology ; Respiratory Tract Infections - virology ; Tissue Distribution ; Transition Temperature ; Viral Fusion Proteins - chemistry ; Viral Fusion Proteins - genetics ; Viral Fusion Proteins - metabolism ; Virus Internalization - drug effects</subject><ispartof>Journal of the American Chemical Society, 2021-04, Vol.143 (15), p.5958-5966</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</citedby><cites>FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</cites><orcidid>0000-0001-9871-8333 ; 0000-0003-3446-9619 ; 0000-0001-5617-0058 ; 0000-0001-7054-4204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c01565$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c01565$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33825470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Outlaw, Victor K</creatorcontrib><creatorcontrib>Cheloha, Ross W</creatorcontrib><creatorcontrib>Jurgens, Eric M</creatorcontrib><creatorcontrib>Bovier, Francesca T</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Kreitler, Dale F</creatorcontrib><creatorcontrib>Harder, Olivia</creatorcontrib><creatorcontrib>Niewiesk, Stefan</creatorcontrib><creatorcontrib>Porotto, Matteo</creatorcontrib><creatorcontrib>Gellman, Samuel H</creatorcontrib><creatorcontrib>Moscona, Anne</creatorcontrib><title>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.</description><subject>Amino Acid Sequence</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - metabolism</subject><subject>Antiviral Agents - pharmacology</subject><subject>Cell Line</subject><subject>Cholesterol - chemistry</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Lipopeptides - chemistry</subject><subject>Lipopeptides - metabolism</subject><subject>Lipopeptides - pharmacology</subject><subject>Parainfluenza Virus 3, Human - drug effects</subject><subject>Parainfluenza Virus 3, Human - isolation &amp; purification</subject><subject>Protein Multimerization</subject><subject>Rats</subject><subject>Respiratory Tract Infections - pathology</subject><subject>Respiratory Tract Infections - virology</subject><subject>Tissue Distribution</subject><subject>Transition Temperature</subject><subject>Viral Fusion Proteins - chemistry</subject><subject>Viral Fusion Proteins - genetics</subject><subject>Viral Fusion Proteins - metabolism</subject><subject>Virus Internalization - drug effects</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1rHDEMhk1paTZpbz2HOfbQSS177PFcCiGkSSDQpbS9Go9Hs_Eya29tTyH99fGSzRfkJAk9eiX0EvIJ6AlQBl_XxqYTsBSEFG_IAgSjtQAm35IFpZTVrZL8gBymtC5lwxS8JwecKyaali5If-5XziNG51fVMoaMJmH9E5NL2fhcLXGb3YCpyqG68jeud7m6nDfGV0sTjfPjNKP_b6o_LpqpKnPbkuQQbws9os0u-A_k3WimhB_38Yj8_n7-6-yyvv5xcXV2el2bBtpcN32jBJVqoEBBAuA4QMv7kWIrZMcl763qqBxsp4yFtledZBxGoWBgjVXAj8i3e93t3G9wsOhzuUlvo9uYeKuDcfplx7sbvQr_tGIgWuiKwOe9QAx_Z0xZb1yyOE3GY5iTZoJ2EqiUvKBf7lEbQ0oRx8c1QPXOFr2zRe9tKfjx89Me4QcfnlbvptZhjr586nWtOwVWl4s</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Outlaw, Victor K</creator><creator>Cheloha, Ross W</creator><creator>Jurgens, Eric M</creator><creator>Bovier, Francesca T</creator><creator>Zhu, Yun</creator><creator>Kreitler, Dale F</creator><creator>Harder, Olivia</creator><creator>Niewiesk, Stefan</creator><creator>Porotto, Matteo</creator><creator>Gellman, Samuel H</creator><creator>Moscona, Anne</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9871-8333</orcidid><orcidid>https://orcid.org/0000-0003-3446-9619</orcidid><orcidid>https://orcid.org/0000-0001-5617-0058</orcidid><orcidid>https://orcid.org/0000-0001-7054-4204</orcidid></search><sort><creationdate>20210421</creationdate><title>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</title><author>Outlaw, Victor K ; Cheloha, Ross W ; Jurgens, Eric M ; Bovier, Francesca T ; Zhu, Yun ; Kreitler, Dale F ; Harder, Olivia ; Niewiesk, Stefan ; Porotto, Matteo ; Gellman, Samuel H ; Moscona, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - metabolism</topic><topic>Antiviral Agents - pharmacology</topic><topic>Cell Line</topic><topic>Cholesterol - chemistry</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Lipopeptides - chemistry</topic><topic>Lipopeptides - metabolism</topic><topic>Lipopeptides - pharmacology</topic><topic>Parainfluenza Virus 3, Human - drug effects</topic><topic>Parainfluenza Virus 3, Human - isolation &amp; purification</topic><topic>Protein Multimerization</topic><topic>Rats</topic><topic>Respiratory Tract Infections - pathology</topic><topic>Respiratory Tract Infections - virology</topic><topic>Tissue Distribution</topic><topic>Transition Temperature</topic><topic>Viral Fusion Proteins - chemistry</topic><topic>Viral Fusion Proteins - genetics</topic><topic>Viral Fusion Proteins - metabolism</topic><topic>Virus Internalization - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Outlaw, Victor K</creatorcontrib><creatorcontrib>Cheloha, Ross W</creatorcontrib><creatorcontrib>Jurgens, Eric M</creatorcontrib><creatorcontrib>Bovier, Francesca T</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Kreitler, Dale F</creatorcontrib><creatorcontrib>Harder, Olivia</creatorcontrib><creatorcontrib>Niewiesk, Stefan</creatorcontrib><creatorcontrib>Porotto, Matteo</creatorcontrib><creatorcontrib>Gellman, Samuel H</creatorcontrib><creatorcontrib>Moscona, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Outlaw, Victor K</au><au>Cheloha, Ross W</au><au>Jurgens, Eric M</au><au>Bovier, Francesca T</au><au>Zhu, Yun</au><au>Kreitler, Dale F</au><au>Harder, Olivia</au><au>Niewiesk, Stefan</au><au>Porotto, Matteo</au><au>Gellman, Samuel H</au><au>Moscona, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>143</volume><issue>15</issue><spage>5958</spage><epage>5966</epage><pages>5958-5966</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33825470</pmid><doi>10.1021/jacs.1c01565</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9871-8333</orcidid><orcidid>https://orcid.org/0000-0003-3446-9619</orcidid><orcidid>https://orcid.org/0000-0001-5617-0058</orcidid><orcidid>https://orcid.org/0000-0001-7054-4204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-04, Vol.143 (15), p.5958-5966
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8215719
source ACS Publications; MEDLINE
subjects Amino Acid Sequence
Amino Acids - chemistry
Amino Acids - metabolism
Animals
Antiviral Agents - chemistry
Antiviral Agents - metabolism
Antiviral Agents - pharmacology
Cell Line
Cholesterol - chemistry
Drug Design
Humans
Lipopeptides - chemistry
Lipopeptides - metabolism
Lipopeptides - pharmacology
Parainfluenza Virus 3, Human - drug effects
Parainfluenza Virus 3, Human - isolation & purification
Protein Multimerization
Rats
Respiratory Tract Infections - pathology
Respiratory Tract Infections - virology
Tissue Distribution
Transition Temperature
Viral Fusion Proteins - chemistry
Viral Fusion Proteins - genetics
Viral Fusion Proteins - metabolism
Virus Internalization - drug effects
title Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Protease-Resistant%20Peptides%20to%20Inhibit%20Human%20Parainfluenza%20Viral%20Respiratory%20Infection&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Outlaw,%20Victor%20K&rft.date=2021-04-21&rft.volume=143&rft.issue=15&rft.spage=5958&rft.epage=5966&rft.pages=5958-5966&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c01565&rft_dat=%3Cproquest_pubme%3E2509610663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509610663&rft_id=info:pmid/33825470&rfr_iscdi=true