Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection
The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important hu...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-04, Vol.143 (15), p.5958-5966 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5966 |
---|---|
container_issue | 15 |
container_start_page | 5958 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Outlaw, Victor K Cheloha, Ross W Jurgens, Eric M Bovier, Francesca T Zhu, Yun Kreitler, Dale F Harder, Olivia Niewiesk, Stefan Porotto, Matteo Gellman, Samuel H Moscona, Anne |
description | The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals. |
doi_str_mv | 10.1021/jacs.1c01565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8215719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509610663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</originalsourceid><addsrcrecordid>eNptkU1rHDEMhk1paTZpbz2HOfbQSS177PFcCiGkSSDQpbS9Go9Hs_Eya29tTyH99fGSzRfkJAk9eiX0EvIJ6AlQBl_XxqYTsBSEFG_IAgSjtQAm35IFpZTVrZL8gBymtC5lwxS8JwecKyaali5If-5XziNG51fVMoaMJmH9E5NL2fhcLXGb3YCpyqG68jeud7m6nDfGV0sTjfPjNKP_b6o_LpqpKnPbkuQQbws9os0u-A_k3WimhB_38Yj8_n7-6-yyvv5xcXV2el2bBtpcN32jBJVqoEBBAuA4QMv7kWIrZMcl763qqBxsp4yFtledZBxGoWBgjVXAj8i3e93t3G9wsOhzuUlvo9uYeKuDcfplx7sbvQr_tGIgWuiKwOe9QAx_Z0xZb1yyOE3GY5iTZoJ2EqiUvKBf7lEbQ0oRx8c1QPXOFr2zRe9tKfjx89Me4QcfnlbvptZhjr586nWtOwVWl4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509610663</pqid></control><display><type>article</type><title>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</title><source>ACS Publications</source><source>MEDLINE</source><creator>Outlaw, Victor K ; Cheloha, Ross W ; Jurgens, Eric M ; Bovier, Francesca T ; Zhu, Yun ; Kreitler, Dale F ; Harder, Olivia ; Niewiesk, Stefan ; Porotto, Matteo ; Gellman, Samuel H ; Moscona, Anne</creator><creatorcontrib>Outlaw, Victor K ; Cheloha, Ross W ; Jurgens, Eric M ; Bovier, Francesca T ; Zhu, Yun ; Kreitler, Dale F ; Harder, Olivia ; Niewiesk, Stefan ; Porotto, Matteo ; Gellman, Samuel H ; Moscona, Anne</creatorcontrib><description>The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c01565</identifier><identifier>PMID: 33825470</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Amino Acids - chemistry ; Amino Acids - metabolism ; Animals ; Antiviral Agents - chemistry ; Antiviral Agents - metabolism ; Antiviral Agents - pharmacology ; Cell Line ; Cholesterol - chemistry ; Drug Design ; Humans ; Lipopeptides - chemistry ; Lipopeptides - metabolism ; Lipopeptides - pharmacology ; Parainfluenza Virus 3, Human - drug effects ; Parainfluenza Virus 3, Human - isolation & purification ; Protein Multimerization ; Rats ; Respiratory Tract Infections - pathology ; Respiratory Tract Infections - virology ; Tissue Distribution ; Transition Temperature ; Viral Fusion Proteins - chemistry ; Viral Fusion Proteins - genetics ; Viral Fusion Proteins - metabolism ; Virus Internalization - drug effects</subject><ispartof>Journal of the American Chemical Society, 2021-04, Vol.143 (15), p.5958-5966</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</citedby><cites>FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</cites><orcidid>0000-0001-9871-8333 ; 0000-0003-3446-9619 ; 0000-0001-5617-0058 ; 0000-0001-7054-4204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c01565$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c01565$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33825470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Outlaw, Victor K</creatorcontrib><creatorcontrib>Cheloha, Ross W</creatorcontrib><creatorcontrib>Jurgens, Eric M</creatorcontrib><creatorcontrib>Bovier, Francesca T</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Kreitler, Dale F</creatorcontrib><creatorcontrib>Harder, Olivia</creatorcontrib><creatorcontrib>Niewiesk, Stefan</creatorcontrib><creatorcontrib>Porotto, Matteo</creatorcontrib><creatorcontrib>Gellman, Samuel H</creatorcontrib><creatorcontrib>Moscona, Anne</creatorcontrib><title>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.</description><subject>Amino Acid Sequence</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - metabolism</subject><subject>Antiviral Agents - pharmacology</subject><subject>Cell Line</subject><subject>Cholesterol - chemistry</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Lipopeptides - chemistry</subject><subject>Lipopeptides - metabolism</subject><subject>Lipopeptides - pharmacology</subject><subject>Parainfluenza Virus 3, Human - drug effects</subject><subject>Parainfluenza Virus 3, Human - isolation & purification</subject><subject>Protein Multimerization</subject><subject>Rats</subject><subject>Respiratory Tract Infections - pathology</subject><subject>Respiratory Tract Infections - virology</subject><subject>Tissue Distribution</subject><subject>Transition Temperature</subject><subject>Viral Fusion Proteins - chemistry</subject><subject>Viral Fusion Proteins - genetics</subject><subject>Viral Fusion Proteins - metabolism</subject><subject>Virus Internalization - drug effects</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1rHDEMhk1paTZpbz2HOfbQSS177PFcCiGkSSDQpbS9Go9Hs_Eya29tTyH99fGSzRfkJAk9eiX0EvIJ6AlQBl_XxqYTsBSEFG_IAgSjtQAm35IFpZTVrZL8gBymtC5lwxS8JwecKyaali5If-5XziNG51fVMoaMJmH9E5NL2fhcLXGb3YCpyqG68jeud7m6nDfGV0sTjfPjNKP_b6o_LpqpKnPbkuQQbws9os0u-A_k3WimhB_38Yj8_n7-6-yyvv5xcXV2el2bBtpcN32jBJVqoEBBAuA4QMv7kWIrZMcl763qqBxsp4yFtledZBxGoWBgjVXAj8i3e93t3G9wsOhzuUlvo9uYeKuDcfplx7sbvQr_tGIgWuiKwOe9QAx_Z0xZb1yyOE3GY5iTZoJ2EqiUvKBf7lEbQ0oRx8c1QPXOFr2zRe9tKfjx89Me4QcfnlbvptZhjr586nWtOwVWl4s</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Outlaw, Victor K</creator><creator>Cheloha, Ross W</creator><creator>Jurgens, Eric M</creator><creator>Bovier, Francesca T</creator><creator>Zhu, Yun</creator><creator>Kreitler, Dale F</creator><creator>Harder, Olivia</creator><creator>Niewiesk, Stefan</creator><creator>Porotto, Matteo</creator><creator>Gellman, Samuel H</creator><creator>Moscona, Anne</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9871-8333</orcidid><orcidid>https://orcid.org/0000-0003-3446-9619</orcidid><orcidid>https://orcid.org/0000-0001-5617-0058</orcidid><orcidid>https://orcid.org/0000-0001-7054-4204</orcidid></search><sort><creationdate>20210421</creationdate><title>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</title><author>Outlaw, Victor K ; Cheloha, Ross W ; Jurgens, Eric M ; Bovier, Francesca T ; Zhu, Yun ; Kreitler, Dale F ; Harder, Olivia ; Niewiesk, Stefan ; Porotto, Matteo ; Gellman, Samuel H ; Moscona, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-4b485068d0101611efd173bf0e7569363bc8906dc98ac17b896231f581d24c813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - metabolism</topic><topic>Antiviral Agents - pharmacology</topic><topic>Cell Line</topic><topic>Cholesterol - chemistry</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Lipopeptides - chemistry</topic><topic>Lipopeptides - metabolism</topic><topic>Lipopeptides - pharmacology</topic><topic>Parainfluenza Virus 3, Human - drug effects</topic><topic>Parainfluenza Virus 3, Human - isolation & purification</topic><topic>Protein Multimerization</topic><topic>Rats</topic><topic>Respiratory Tract Infections - pathology</topic><topic>Respiratory Tract Infections - virology</topic><topic>Tissue Distribution</topic><topic>Transition Temperature</topic><topic>Viral Fusion Proteins - chemistry</topic><topic>Viral Fusion Proteins - genetics</topic><topic>Viral Fusion Proteins - metabolism</topic><topic>Virus Internalization - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Outlaw, Victor K</creatorcontrib><creatorcontrib>Cheloha, Ross W</creatorcontrib><creatorcontrib>Jurgens, Eric M</creatorcontrib><creatorcontrib>Bovier, Francesca T</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Kreitler, Dale F</creatorcontrib><creatorcontrib>Harder, Olivia</creatorcontrib><creatorcontrib>Niewiesk, Stefan</creatorcontrib><creatorcontrib>Porotto, Matteo</creatorcontrib><creatorcontrib>Gellman, Samuel H</creatorcontrib><creatorcontrib>Moscona, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Outlaw, Victor K</au><au>Cheloha, Ross W</au><au>Jurgens, Eric M</au><au>Bovier, Francesca T</au><au>Zhu, Yun</au><au>Kreitler, Dale F</au><au>Harder, Olivia</au><au>Niewiesk, Stefan</au><au>Porotto, Matteo</au><au>Gellman, Samuel H</au><au>Moscona, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>143</volume><issue>15</issue><spage>5958</spage><epage>5966</epage><pages>5958-5966</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with β-amino acid residues to generate α/β-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/β-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33825470</pmid><doi>10.1021/jacs.1c01565</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9871-8333</orcidid><orcidid>https://orcid.org/0000-0003-3446-9619</orcidid><orcidid>https://orcid.org/0000-0001-5617-0058</orcidid><orcidid>https://orcid.org/0000-0001-7054-4204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-04, Vol.143 (15), p.5958-5966 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8215719 |
source | ACS Publications; MEDLINE |
subjects | Amino Acid Sequence Amino Acids - chemistry Amino Acids - metabolism Animals Antiviral Agents - chemistry Antiviral Agents - metabolism Antiviral Agents - pharmacology Cell Line Cholesterol - chemistry Drug Design Humans Lipopeptides - chemistry Lipopeptides - metabolism Lipopeptides - pharmacology Parainfluenza Virus 3, Human - drug effects Parainfluenza Virus 3, Human - isolation & purification Protein Multimerization Rats Respiratory Tract Infections - pathology Respiratory Tract Infections - virology Tissue Distribution Transition Temperature Viral Fusion Proteins - chemistry Viral Fusion Proteins - genetics Viral Fusion Proteins - metabolism Virus Internalization - drug effects |
title | Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Protease-Resistant%20Peptides%20to%20Inhibit%20Human%20Parainfluenza%20Viral%20Respiratory%20Infection&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Outlaw,%20Victor%20K&rft.date=2021-04-21&rft.volume=143&rft.issue=15&rft.spage=5958&rft.epage=5966&rft.pages=5958-5966&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c01565&rft_dat=%3Cproquest_pubme%3E2509610663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509610663&rft_id=info:pmid/33825470&rfr_iscdi=true |