Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-07, Vol.297 (1), p.100902-100902, Article 100902
Hauptverfasser: Barrett, Chelsea T., Neal, Hadley E., Edmonds, Kearstin, Moncman, Carole L., Thompson, Rachel, Branttie, Jean M., Boggs, Kerri Beth, Wu, Cheng-Yu, Leung, Daisy W., Dutch, Rebecca E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100902
container_issue 1
container_start_page 100902
container_title The Journal of biological chemistry
container_volume 297
creator Barrett, Chelsea T.
Neal, Hadley E.
Edmonds, Kearstin
Moncman, Carole L.
Thompson, Rachel
Branttie, Jean M.
Boggs, Kerri Beth
Wu, Cheng-Yu
Leung, Daisy W.
Dutch, Rebecca E.
description The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.
doi_str_mv 10.1016/j.jbc.2021.100902
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8214756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582100702X</els_id><sourcerecordid>2544461807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a5626ed0afcf63e65afca4613496674247e27b7fc36897b37704523a53e9a4993</originalsourceid><addsrcrecordid>eNp9UcuKFDEUDaI47egHuJEsXUy1eacKQRia8QEDgqPiLqRSNzNpqyttkmqYnR_gzj_0S0zTY6Mbs7mPc-7JTQ5CTylZUkLVi_Vy3bslI4zWmnSE3UMLSlrecEm_3EcLUpGmY7I9QY9yXpN6REcfohMuqNSsZQv048J7cAVHj90YpuDsiEOOoy2AY6o9sDt7DTiH2tjMxZYQp4zDhMsN4KvzD1fNKn5uGM7b8BXwNsUCFYzTMc3F9mEM5fbsqHaG7TRgB-P46_vPfcB-zlX3MXrg7ZjhyV08RZ9eX3xcvW0u3795tzq_bJyQtDRWKqZgINY7rzgoWRMrFOWiU0oLJjQw3WvvuGo73XOtiZCMW8mhs6Lr-Cl6ddDdzv0GBgdTSXY02xQ2Nt2aaIP5F5nCjbmOO9MyKrRUVeD5nUCK32bIxWxC3j_EThDnbJgUoi7UEl2p9EB1KeacwB-vocTsXTRrU100exfNwcU68-zv_Y4Tf2yrhJcHAtRf2gVIJrsAk4MhpOqmGWL4j_xv8CGvdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544461807</pqid></control><display><type>article</type><title>Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Barrett, Chelsea T. ; Neal, Hadley E. ; Edmonds, Kearstin ; Moncman, Carole L. ; Thompson, Rachel ; Branttie, Jean M. ; Boggs, Kerri Beth ; Wu, Cheng-Yu ; Leung, Daisy W. ; Dutch, Rebecca E.</creator><creatorcontrib>Barrett, Chelsea T. ; Neal, Hadley E. ; Edmonds, Kearstin ; Moncman, Carole L. ; Thompson, Rachel ; Branttie, Jean M. ; Boggs, Kerri Beth ; Wu, Cheng-Yu ; Leung, Daisy W. ; Dutch, Rebecca E.</creatorcontrib><description>The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.100902</identifier><identifier>PMID: 34157282</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Fusion ; Cell Line ; Chlorocebus aethiops ; coronavirus ; COVID-19 ; COVID-19 - virology ; fusion protein ; Humans ; membrane fusion ; Protein Processing, Post-Translational ; Protein Stability ; SARS-CoV-2 ; SARS-CoV-2 - chemistry ; SARS-CoV-2 - genetics ; SARS-CoV-2 - metabolism ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism ; viral protein ; virology ; Virus Attachment ; virus entry ; Virus Internalization</subject><ispartof>The Journal of biological chemistry, 2021-07, Vol.297 (1), p.100902-100902, Article 100902</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a5626ed0afcf63e65afca4613496674247e27b7fc36897b37704523a53e9a4993</citedby><cites>FETCH-LOGICAL-c451t-a5626ed0afcf63e65afca4613496674247e27b7fc36897b37704523a53e9a4993</cites><orcidid>0000-0003-4088-6347 ; 0000-0001-8433-593X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34157282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrett, Chelsea T.</creatorcontrib><creatorcontrib>Neal, Hadley E.</creatorcontrib><creatorcontrib>Edmonds, Kearstin</creatorcontrib><creatorcontrib>Moncman, Carole L.</creatorcontrib><creatorcontrib>Thompson, Rachel</creatorcontrib><creatorcontrib>Branttie, Jean M.</creatorcontrib><creatorcontrib>Boggs, Kerri Beth</creatorcontrib><creatorcontrib>Wu, Cheng-Yu</creatorcontrib><creatorcontrib>Leung, Daisy W.</creatorcontrib><creatorcontrib>Dutch, Rebecca E.</creatorcontrib><title>Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.</description><subject>Animals</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Chlorocebus aethiops</subject><subject>coronavirus</subject><subject>COVID-19</subject><subject>COVID-19 - virology</subject><subject>fusion protein</subject><subject>Humans</subject><subject>membrane fusion</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Stability</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - chemistry</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>viral protein</subject><subject>virology</subject><subject>Virus Attachment</subject><subject>virus entry</subject><subject>Virus Internalization</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcuKFDEUDaI47egHuJEsXUy1eacKQRia8QEDgqPiLqRSNzNpqyttkmqYnR_gzj_0S0zTY6Mbs7mPc-7JTQ5CTylZUkLVi_Vy3bslI4zWmnSE3UMLSlrecEm_3EcLUpGmY7I9QY9yXpN6REcfohMuqNSsZQv048J7cAVHj90YpuDsiEOOoy2AY6o9sDt7DTiH2tjMxZYQp4zDhMsN4KvzD1fNKn5uGM7b8BXwNsUCFYzTMc3F9mEM5fbsqHaG7TRgB-P46_vPfcB-zlX3MXrg7ZjhyV08RZ9eX3xcvW0u3795tzq_bJyQtDRWKqZgINY7rzgoWRMrFOWiU0oLJjQw3WvvuGo73XOtiZCMW8mhs6Lr-Cl6ddDdzv0GBgdTSXY02xQ2Nt2aaIP5F5nCjbmOO9MyKrRUVeD5nUCK32bIxWxC3j_EThDnbJgUoi7UEl2p9EB1KeacwB-vocTsXTRrU100exfNwcU68-zv_Y4Tf2yrhJcHAtRf2gVIJrsAk4MhpOqmGWL4j_xv8CGvdw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Barrett, Chelsea T.</creator><creator>Neal, Hadley E.</creator><creator>Edmonds, Kearstin</creator><creator>Moncman, Carole L.</creator><creator>Thompson, Rachel</creator><creator>Branttie, Jean M.</creator><creator>Boggs, Kerri Beth</creator><creator>Wu, Cheng-Yu</creator><creator>Leung, Daisy W.</creator><creator>Dutch, Rebecca E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4088-6347</orcidid><orcidid>https://orcid.org/0000-0001-8433-593X</orcidid></search><sort><creationdate>20210701</creationdate><title>Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion</title><author>Barrett, Chelsea T. ; Neal, Hadley E. ; Edmonds, Kearstin ; Moncman, Carole L. ; Thompson, Rachel ; Branttie, Jean M. ; Boggs, Kerri Beth ; Wu, Cheng-Yu ; Leung, Daisy W. ; Dutch, Rebecca E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a5626ed0afcf63e65afca4613496674247e27b7fc36897b37704523a53e9a4993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Chlorocebus aethiops</topic><topic>coronavirus</topic><topic>COVID-19</topic><topic>COVID-19 - virology</topic><topic>fusion protein</topic><topic>Humans</topic><topic>membrane fusion</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Stability</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - chemistry</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>viral protein</topic><topic>virology</topic><topic>Virus Attachment</topic><topic>virus entry</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrett, Chelsea T.</creatorcontrib><creatorcontrib>Neal, Hadley E.</creatorcontrib><creatorcontrib>Edmonds, Kearstin</creatorcontrib><creatorcontrib>Moncman, Carole L.</creatorcontrib><creatorcontrib>Thompson, Rachel</creatorcontrib><creatorcontrib>Branttie, Jean M.</creatorcontrib><creatorcontrib>Boggs, Kerri Beth</creatorcontrib><creatorcontrib>Wu, Cheng-Yu</creatorcontrib><creatorcontrib>Leung, Daisy W.</creatorcontrib><creatorcontrib>Dutch, Rebecca E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrett, Chelsea T.</au><au>Neal, Hadley E.</au><au>Edmonds, Kearstin</au><au>Moncman, Carole L.</au><au>Thompson, Rachel</au><au>Branttie, Jean M.</au><au>Boggs, Kerri Beth</au><au>Wu, Cheng-Yu</au><au>Leung, Daisy W.</au><au>Dutch, Rebecca E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>297</volume><issue>1</issue><spage>100902</spage><epage>100902</epage><pages>100902-100902</pages><artnum>100902</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34157282</pmid><doi>10.1016/j.jbc.2021.100902</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4088-6347</orcidid><orcidid>https://orcid.org/0000-0001-8433-593X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-07, Vol.297 (1), p.100902-100902, Article 100902
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8214756
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cell Fusion
Cell Line
Chlorocebus aethiops
coronavirus
COVID-19
COVID-19 - virology
fusion protein
Humans
membrane fusion
Protein Processing, Post-Translational
Protein Stability
SARS-CoV-2
SARS-CoV-2 - chemistry
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
viral protein
virology
Virus Attachment
virus entry
Virus Internalization
title Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20clinical%20isolate%20or%20cleavage%20site%20mutations%20in%20the%20SARS-CoV-2%20spike%20protein%20on%20protein%20stability,%20cleavage,%20and%20cell%E2%80%93cell%20fusion&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Barrett,%20Chelsea%20T.&rft.date=2021-07-01&rft.volume=297&rft.issue=1&rft.spage=100902&rft.epage=100902&rft.pages=100902-100902&rft.artnum=100902&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.100902&rft_dat=%3Cproquest_pubme%3E2544461807%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544461807&rft_id=info:pmid/34157282&rft_els_id=S002192582100702X&rfr_iscdi=true