Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach

Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the excl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2021-04, Vol.30 (4), p.958-975
Hauptverfasser: Spineli, Loukia M, Kalyvas, Chrysostomos, Papadimitropoulou, Katerina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 4
container_start_page 958
container_title Statistical methods in medical research
container_volume 30
creator Spineli, Loukia M
Kalyvas, Chrysostomos
Papadimitropoulou, Katerina
description Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.
doi_str_mv 10.1177/0962280220983544
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280220983544</sage_id><sourcerecordid>2528410355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURq0KRIfCvitkiU1ZmPqVOO4CqRrxkiqxKWvLSW5mXBI7tR1g_j0eTWlLJVZenHM_299F6JTR94wpdU51zXlDOae6EZWUR2jFpFKECiGfodUekz0_Ri9TuqGUKir1C3RcMK21piu0XQefnV_Cks7G3Ts8uZSc3-Cw5C5MgHubLXYee8i_QvyBJ8iWWG_HXXLpAl_i4IGkbDeAZ5szRE8m9zsvEfAUehixnecYbLd9hZ4Pdkzw-u48Qd8_fbxefyFX3z5_XV9ekU7WPJNWDkMrmkqrSg6UD7LXXGrVSgCuGOWNhVqJgTU9E9CrWvC2Kbi1omMDq0CcoA-H3HlpJ-g78Dna0czRTTbuTLDO_Eu825pN-GmaUqJgsgSc3QXEcLtAyqZ00sE4Wg-lJcOlqhnXFW-K-vaJehOWWMopVuGSUVFVxaIHq4shpQjD_WMYNfs1mqdrLCNvHn_ifuDv3opADkIqzT_c-t_AP-3wpfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528410355</pqid></control><display><type>article</type><title>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>Spineli, Loukia M ; Kalyvas, Chrysostomos ; Papadimitropoulou, Katerina</creator><creatorcontrib>Spineli, Loukia M ; Kalyvas, Chrysostomos ; Papadimitropoulou, Katerina</creatorcontrib><description>Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280220983544</identifier><identifier>PMID: 33406990</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bayesian analysis ; Bias ; Continuous data ; Intervention ; Mathematical models ; Meta-analysis ; Parameters ; Pattern analysis ; Systematic review</subject><ispartof>Statistical methods in medical research, 2021-04, Vol.30 (4), p.958-975</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021 2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</citedby><cites>FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</cites><orcidid>0000-0003-0606-4518 ; 0000-0001-9515-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280220983544$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280220983544$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,21818,27923,27924,30998,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33406990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spineli, Loukia M</creatorcontrib><creatorcontrib>Kalyvas, Chrysostomos</creatorcontrib><creatorcontrib>Papadimitropoulou, Katerina</creatorcontrib><title>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.</description><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Continuous data</subject><subject>Intervention</subject><subject>Mathematical models</subject><subject>Meta-analysis</subject><subject>Parameters</subject><subject>Pattern analysis</subject><subject>Systematic review</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kUtv1DAURq0KRIfCvitkiU1ZmPqVOO4CqRrxkiqxKWvLSW5mXBI7tR1g_j0eTWlLJVZenHM_299F6JTR94wpdU51zXlDOae6EZWUR2jFpFKECiGfodUekz0_Ri9TuqGUKir1C3RcMK21piu0XQefnV_Cks7G3Ts8uZSc3-Cw5C5MgHubLXYee8i_QvyBJ8iWWG_HXXLpAl_i4IGkbDeAZ5szRE8m9zsvEfAUehixnecYbLd9hZ4Pdkzw-u48Qd8_fbxefyFX3z5_XV9ekU7WPJNWDkMrmkqrSg6UD7LXXGrVSgCuGOWNhVqJgTU9E9CrWvC2Kbi1omMDq0CcoA-H3HlpJ-g78Dna0czRTTbuTLDO_Eu825pN-GmaUqJgsgSc3QXEcLtAyqZ00sE4Wg-lJcOlqhnXFW-K-vaJehOWWMopVuGSUVFVxaIHq4shpQjD_WMYNfs1mqdrLCNvHn_ifuDv3opADkIqzT_c-t_AP-3wpfs</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Spineli, Loukia M</creator><creator>Kalyvas, Chrysostomos</creator><creator>Papadimitropoulou, Katerina</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0606-4518</orcidid><orcidid>https://orcid.org/0000-0001-9515-582X</orcidid></search><sort><creationdate>202104</creationdate><title>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</title><author>Spineli, Loukia M ; Kalyvas, Chrysostomos ; Papadimitropoulou, Katerina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Continuous data</topic><topic>Intervention</topic><topic>Mathematical models</topic><topic>Meta-analysis</topic><topic>Parameters</topic><topic>Pattern analysis</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spineli, Loukia M</creatorcontrib><creatorcontrib>Kalyvas, Chrysostomos</creatorcontrib><creatorcontrib>Papadimitropoulou, Katerina</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spineli, Loukia M</au><au>Kalyvas, Chrysostomos</au><au>Papadimitropoulou, Katerina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2021-04</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>958</spage><epage>975</epage><pages>958-975</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33406990</pmid><doi>10.1177/0962280220983544</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0606-4518</orcidid><orcidid>https://orcid.org/0000-0001-9515-582X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2021-04, Vol.30 (4), p.958-975
issn 0962-2802
1477-0334
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209314
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List
subjects Bayesian analysis
Bias
Continuous data
Intervention
Mathematical models
Meta-analysis
Parameters
Pattern analysis
Systematic review
title Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous(ly)%20missing%20outcome%20data%20in%20network%20meta-analysis:%20A%20one-stage%20pattern-mixture%20model%20approach&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Spineli,%20Loukia%20M&rft.date=2021-04&rft.volume=30&rft.issue=4&rft.spage=958&rft.epage=975&rft.pages=958-975&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280220983544&rft_dat=%3Cproquest_pubme%3E2528410355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528410355&rft_id=info:pmid/33406990&rft_sage_id=10.1177_0962280220983544&rfr_iscdi=true