Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach
Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the excl...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2021-04, Vol.30 (4), p.958-975 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 4 |
container_start_page | 958 |
container_title | Statistical methods in medical research |
container_volume | 30 |
creator | Spineli, Loukia M Kalyvas, Chrysostomos Papadimitropoulou, Katerina |
description | Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data. |
doi_str_mv | 10.1177/0962280220983544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280220983544</sage_id><sourcerecordid>2528410355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURq0KRIfCvitkiU1ZmPqVOO4CqRrxkiqxKWvLSW5mXBI7tR1g_j0eTWlLJVZenHM_299F6JTR94wpdU51zXlDOae6EZWUR2jFpFKECiGfodUekz0_Ri9TuqGUKir1C3RcMK21piu0XQefnV_Cks7G3Ts8uZSc3-Cw5C5MgHubLXYee8i_QvyBJ8iWWG_HXXLpAl_i4IGkbDeAZ5szRE8m9zsvEfAUehixnecYbLd9hZ4Pdkzw-u48Qd8_fbxefyFX3z5_XV9ekU7WPJNWDkMrmkqrSg6UD7LXXGrVSgCuGOWNhVqJgTU9E9CrWvC2Kbi1omMDq0CcoA-H3HlpJ-g78Dna0czRTTbuTLDO_Eu825pN-GmaUqJgsgSc3QXEcLtAyqZ00sE4Wg-lJcOlqhnXFW-K-vaJehOWWMopVuGSUVFVxaIHq4shpQjD_WMYNfs1mqdrLCNvHn_ifuDv3opADkIqzT_c-t_AP-3wpfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528410355</pqid></control><display><type>article</type><title>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>Spineli, Loukia M ; Kalyvas, Chrysostomos ; Papadimitropoulou, Katerina</creator><creatorcontrib>Spineli, Loukia M ; Kalyvas, Chrysostomos ; Papadimitropoulou, Katerina</creatorcontrib><description>Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280220983544</identifier><identifier>PMID: 33406990</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bayesian analysis ; Bias ; Continuous data ; Intervention ; Mathematical models ; Meta-analysis ; Parameters ; Pattern analysis ; Systematic review</subject><ispartof>Statistical methods in medical research, 2021-04, Vol.30 (4), p.958-975</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021 2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</citedby><cites>FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</cites><orcidid>0000-0003-0606-4518 ; 0000-0001-9515-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280220983544$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280220983544$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,21818,27923,27924,30998,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33406990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spineli, Loukia M</creatorcontrib><creatorcontrib>Kalyvas, Chrysostomos</creatorcontrib><creatorcontrib>Papadimitropoulou, Katerina</creatorcontrib><title>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.</description><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Continuous data</subject><subject>Intervention</subject><subject>Mathematical models</subject><subject>Meta-analysis</subject><subject>Parameters</subject><subject>Pattern analysis</subject><subject>Systematic review</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kUtv1DAURq0KRIfCvitkiU1ZmPqVOO4CqRrxkiqxKWvLSW5mXBI7tR1g_j0eTWlLJVZenHM_299F6JTR94wpdU51zXlDOae6EZWUR2jFpFKECiGfodUekz0_Ri9TuqGUKir1C3RcMK21piu0XQefnV_Cks7G3Ts8uZSc3-Cw5C5MgHubLXYee8i_QvyBJ8iWWG_HXXLpAl_i4IGkbDeAZ5szRE8m9zsvEfAUehixnecYbLd9hZ4Pdkzw-u48Qd8_fbxefyFX3z5_XV9ekU7WPJNWDkMrmkqrSg6UD7LXXGrVSgCuGOWNhVqJgTU9E9CrWvC2Kbi1omMDq0CcoA-H3HlpJ-g78Dna0czRTTbuTLDO_Eu825pN-GmaUqJgsgSc3QXEcLtAyqZ00sE4Wg-lJcOlqhnXFW-K-vaJehOWWMopVuGSUVFVxaIHq4shpQjD_WMYNfs1mqdrLCNvHn_ifuDv3opADkIqzT_c-t_AP-3wpfs</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Spineli, Loukia M</creator><creator>Kalyvas, Chrysostomos</creator><creator>Papadimitropoulou, Katerina</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0606-4518</orcidid><orcidid>https://orcid.org/0000-0001-9515-582X</orcidid></search><sort><creationdate>202104</creationdate><title>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</title><author>Spineli, Loukia M ; Kalyvas, Chrysostomos ; Papadimitropoulou, Katerina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b4ffb3859754f02f4d92497b4ee271028ae673f18d13ed7632b897bba3c1f15e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Continuous data</topic><topic>Intervention</topic><topic>Mathematical models</topic><topic>Meta-analysis</topic><topic>Parameters</topic><topic>Pattern analysis</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spineli, Loukia M</creatorcontrib><creatorcontrib>Kalyvas, Chrysostomos</creatorcontrib><creatorcontrib>Papadimitropoulou, Katerina</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spineli, Loukia M</au><au>Kalyvas, Chrysostomos</au><au>Papadimitropoulou, Katerina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2021-04</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>958</spage><epage>975</epage><pages>958-975</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Appropriate handling of aggregate missing outcome data is necessary to minimise bias in the conclusions of systematic reviews. The two-stage pattern-mixture model has been already proposed to address aggregate missing continuous outcome data. While this approach is more proper compared with the exclusion of missing continuous outcome data and simple imputation methods, it does not offer flexible modelling of missing continuous outcome data to investigate their implications on the conclusions thoroughly. Therefore, we propose a one-stage pattern-mixture model approach under the Bayesian framework to address missing continuous outcome data in a network of interventions and gain knowledge about the missingness process in different trials and interventions. We extend the hierarchical network meta-analysis model for one aggregate continuous outcome to incorporate a missingness parameter that measures the departure from the missing at random assumption. We consider various effect size estimates for continuous data, and two informative missingness parameters, the informative missingness difference of means and the informative missingness ratio of means. We incorporate our prior belief about the missingness parameters while allowing for several possibilities of prior structures to account for the fact that the missingness process may differ in the network. The method is exemplified in two networks from published reviews comprising a different amount of missing continuous outcome data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33406990</pmid><doi>10.1177/0962280220983544</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0606-4518</orcidid><orcidid>https://orcid.org/0000-0001-9515-582X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2021-04, Vol.30 (4), p.958-975 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209314 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List |
subjects | Bayesian analysis Bias Continuous data Intervention Mathematical models Meta-analysis Parameters Pattern analysis Systematic review |
title | Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous(ly)%20missing%20outcome%20data%20in%20network%20meta-analysis:%20A%20one-stage%20pattern-mixture%20model%20approach&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Spineli,%20Loukia%20M&rft.date=2021-04&rft.volume=30&rft.issue=4&rft.spage=958&rft.epage=975&rft.pages=958-975&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280220983544&rft_dat=%3Cproquest_pubme%3E2528410355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528410355&rft_id=info:pmid/33406990&rft_sage_id=10.1177_0962280220983544&rfr_iscdi=true |