Evaluating extinction, renewal, and resurgence of operant behavior in humans with Amazon Mechanical Turk

•Examined reinforcement and extinction using crowdsourcing across six experiments.•Adding response cost for all button presses facilitated extinction.•Demonstrated ABA renewal when changing background contexts across phases.•Demonstrated resurgence of a target when extinguishing alternative-button p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Learning and motivation 2021-05, Vol.74, p.101728, Article 101728
Hauptverfasser: Ritchey, Carolyn M., Kuroda, Toshikazu, Rung, Jillian M., Podlesnik, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101728
container_title Learning and motivation
container_volume 74
creator Ritchey, Carolyn M.
Kuroda, Toshikazu
Rung, Jillian M.
Podlesnik, Christopher A.
description •Examined reinforcement and extinction using crowdsourcing across six experiments.•Adding response cost for all button presses facilitated extinction.•Demonstrated ABA renewal when changing background contexts across phases.•Demonstrated resurgence of a target when extinguishing alternative-button presses.•Crowdsourcing showed promise for examining reinforcement and extinction processes. Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace providing researchers with the opportunity to collect behavioral data from remote participants at a low cost. Recent research demonstrated reliable extinction effects, as well as renewal and resurgence of button pressing with MTurk participants. To further examine the generality of these findings, we replicated and extended these methods across six experiments arranging reinforcement and extinction of a target button press. In contrast to previous findings, we did not observe as reliable of decreases in button pressing during extinction (1) after training with VR or VI schedules of reinforcement, (2) in the presence or absence of context changes, or (3) with an added response cost for button pressing. However, we found that that a 1-point response cost for all button presses facilitated extinction to a greater extent than the absence of response cost. Nevertheless, we observed ABA renewal of button pressing when changing background contexts across phases and resurgence when extinguishing presses on an alternative button. Our findings suggest that MTurk could be a viable platform from which to ask and address questions about extinction and relapse processes, but further procedural refinements will be necessary to improve the replicability of control by experimental contingencies.
doi_str_mv 10.1016/j.lmot.2021.101728
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8208628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0023969021000229</els_id><sourcerecordid>2549286288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-a9f29b73a2dae17670e3a09a25a36c8e889c9f8c98ffda12ced16446e6d28b13</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhBTggS1w4NFvbyTq2hCpVVaFIrbjs3Zp1Jhsvib3YzhZ4ehJtqQoHTiPb33ya8U_IW86WnHF5vlv2Q8hLwQSfL2qhnpEFZ3pVaC7Ec7JgTJSFlpqdkFcp7RjjfKX0S3JSVrzSTMoF6a4P0I-Qnd9S_DEVm13wZzSix3vozyj4ZjqkMW7RW6ShpWGPEXymG-zg4EKkztNuHMAneu9yRy8H-BU8vUPbgXcWeroe47fX5EULfcI3D_WUrD9dr69uituvn79cXd4WtlJlLkC3Qm_qEkQDyGtZMyyBaRArKKVVqJS2ulVWq7ZtgAuLDZdVJVE2Qm14eUoujtr9uBmwsehzhN7soxsg_jQBnPn7xbvObMPBKMGUFGoSfHgQxPB9xJTN4JLFvgePYUxGrKqyZpWo6gl9_w-6C2P003YzpcXsm4XiSNkYUorYPg7DmZlzNDsz52jmHM0xx6np3dM1Hlv-BDcBH48ATn95cBhNsm5OqHERbTZNcP_z_wYulbDO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549286288</pqid></control><display><type>article</type><title>Evaluating extinction, renewal, and resurgence of operant behavior in humans with Amazon Mechanical Turk</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ritchey, Carolyn M. ; Kuroda, Toshikazu ; Rung, Jillian M. ; Podlesnik, Christopher A.</creator><creatorcontrib>Ritchey, Carolyn M. ; Kuroda, Toshikazu ; Rung, Jillian M. ; Podlesnik, Christopher A.</creatorcontrib><description>•Examined reinforcement and extinction using crowdsourcing across six experiments.•Adding response cost for all button presses facilitated extinction.•Demonstrated ABA renewal when changing background contexts across phases.•Demonstrated resurgence of a target when extinguishing alternative-button presses.•Crowdsourcing showed promise for examining reinforcement and extinction processes. Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace providing researchers with the opportunity to collect behavioral data from remote participants at a low cost. Recent research demonstrated reliable extinction effects, as well as renewal and resurgence of button pressing with MTurk participants. To further examine the generality of these findings, we replicated and extended these methods across six experiments arranging reinforcement and extinction of a target button press. In contrast to previous findings, we did not observe as reliable of decreases in button pressing during extinction (1) after training with VR or VI schedules of reinforcement, (2) in the presence or absence of context changes, or (3) with an added response cost for button pressing. However, we found that that a 1-point response cost for all button presses facilitated extinction to a greater extent than the absence of response cost. Nevertheless, we observed ABA renewal of button pressing when changing background contexts across phases and resurgence when extinguishing presses on an alternative button. Our findings suggest that MTurk could be a viable platform from which to ask and address questions about extinction and relapse processes, but further procedural refinements will be necessary to improve the replicability of control by experimental contingencies.</description><identifier>ISSN: 0023-9690</identifier><identifier>EISSN: 1095-9122</identifier><identifier>DOI: 10.1016/j.lmot.2021.101728</identifier><identifier>PMID: 34149066</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amazon Mechanical Turk ; Button press ; Crowdsourcing ; Extinction ; Extinction (Learning) ; Humans ; Operant conditioning ; Reinforcement</subject><ispartof>Learning and motivation, 2021-05, Vol.74, p.101728, Article 101728</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier Limited May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-a9f29b73a2dae17670e3a09a25a36c8e889c9f8c98ffda12ced16446e6d28b13</citedby><cites>FETCH-LOGICAL-c483t-a9f29b73a2dae17670e3a09a25a36c8e889c9f8c98ffda12ced16446e6d28b13</cites><orcidid>0000-0002-5945-6454 ; 0000-0001-5416-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.lmot.2021.101728$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34149066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ritchey, Carolyn M.</creatorcontrib><creatorcontrib>Kuroda, Toshikazu</creatorcontrib><creatorcontrib>Rung, Jillian M.</creatorcontrib><creatorcontrib>Podlesnik, Christopher A.</creatorcontrib><title>Evaluating extinction, renewal, and resurgence of operant behavior in humans with Amazon Mechanical Turk</title><title>Learning and motivation</title><addtitle>Learn Motiv</addtitle><description>•Examined reinforcement and extinction using crowdsourcing across six experiments.•Adding response cost for all button presses facilitated extinction.•Demonstrated ABA renewal when changing background contexts across phases.•Demonstrated resurgence of a target when extinguishing alternative-button presses.•Crowdsourcing showed promise for examining reinforcement and extinction processes. Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace providing researchers with the opportunity to collect behavioral data from remote participants at a low cost. Recent research demonstrated reliable extinction effects, as well as renewal and resurgence of button pressing with MTurk participants. To further examine the generality of these findings, we replicated and extended these methods across six experiments arranging reinforcement and extinction of a target button press. In contrast to previous findings, we did not observe as reliable of decreases in button pressing during extinction (1) after training with VR or VI schedules of reinforcement, (2) in the presence or absence of context changes, or (3) with an added response cost for button pressing. However, we found that that a 1-point response cost for all button presses facilitated extinction to a greater extent than the absence of response cost. Nevertheless, we observed ABA renewal of button pressing when changing background contexts across phases and resurgence when extinguishing presses on an alternative button. Our findings suggest that MTurk could be a viable platform from which to ask and address questions about extinction and relapse processes, but further procedural refinements will be necessary to improve the replicability of control by experimental contingencies.</description><subject>Amazon Mechanical Turk</subject><subject>Button press</subject><subject>Crowdsourcing</subject><subject>Extinction</subject><subject>Extinction (Learning)</subject><subject>Humans</subject><subject>Operant conditioning</subject><subject>Reinforcement</subject><issn>0023-9690</issn><issn>1095-9122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EokvhBTggS1w4NFvbyTq2hCpVVaFIrbjs3Zp1Jhsvib3YzhZ4ehJtqQoHTiPb33ya8U_IW86WnHF5vlv2Q8hLwQSfL2qhnpEFZ3pVaC7Ec7JgTJSFlpqdkFcp7RjjfKX0S3JSVrzSTMoF6a4P0I-Qnd9S_DEVm13wZzSix3vozyj4ZjqkMW7RW6ShpWGPEXymG-zg4EKkztNuHMAneu9yRy8H-BU8vUPbgXcWeroe47fX5EULfcI3D_WUrD9dr69uituvn79cXd4WtlJlLkC3Qm_qEkQDyGtZMyyBaRArKKVVqJS2ulVWq7ZtgAuLDZdVJVE2Qm14eUoujtr9uBmwsehzhN7soxsg_jQBnPn7xbvObMPBKMGUFGoSfHgQxPB9xJTN4JLFvgePYUxGrKqyZpWo6gl9_w-6C2P003YzpcXsm4XiSNkYUorYPg7DmZlzNDsz52jmHM0xx6np3dM1Hlv-BDcBH48ATn95cBhNsm5OqHERbTZNcP_z_wYulbDO</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Ritchey, Carolyn M.</creator><creator>Kuroda, Toshikazu</creator><creator>Rung, Jillian M.</creator><creator>Podlesnik, Christopher A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5945-6454</orcidid><orcidid>https://orcid.org/0000-0001-5416-0833</orcidid></search><sort><creationdate>202105</creationdate><title>Evaluating extinction, renewal, and resurgence of operant behavior in humans with Amazon Mechanical Turk</title><author>Ritchey, Carolyn M. ; Kuroda, Toshikazu ; Rung, Jillian M. ; Podlesnik, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-a9f29b73a2dae17670e3a09a25a36c8e889c9f8c98ffda12ced16446e6d28b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amazon Mechanical Turk</topic><topic>Button press</topic><topic>Crowdsourcing</topic><topic>Extinction</topic><topic>Extinction (Learning)</topic><topic>Humans</topic><topic>Operant conditioning</topic><topic>Reinforcement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritchey, Carolyn M.</creatorcontrib><creatorcontrib>Kuroda, Toshikazu</creatorcontrib><creatorcontrib>Rung, Jillian M.</creatorcontrib><creatorcontrib>Podlesnik, Christopher A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Learning and motivation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritchey, Carolyn M.</au><au>Kuroda, Toshikazu</au><au>Rung, Jillian M.</au><au>Podlesnik, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating extinction, renewal, and resurgence of operant behavior in humans with Amazon Mechanical Turk</atitle><jtitle>Learning and motivation</jtitle><addtitle>Learn Motiv</addtitle><date>2021-05</date><risdate>2021</risdate><volume>74</volume><spage>101728</spage><pages>101728-</pages><artnum>101728</artnum><issn>0023-9690</issn><eissn>1095-9122</eissn><abstract>•Examined reinforcement and extinction using crowdsourcing across six experiments.•Adding response cost for all button presses facilitated extinction.•Demonstrated ABA renewal when changing background contexts across phases.•Demonstrated resurgence of a target when extinguishing alternative-button presses.•Crowdsourcing showed promise for examining reinforcement and extinction processes. Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace providing researchers with the opportunity to collect behavioral data from remote participants at a low cost. Recent research demonstrated reliable extinction effects, as well as renewal and resurgence of button pressing with MTurk participants. To further examine the generality of these findings, we replicated and extended these methods across six experiments arranging reinforcement and extinction of a target button press. In contrast to previous findings, we did not observe as reliable of decreases in button pressing during extinction (1) after training with VR or VI schedules of reinforcement, (2) in the presence or absence of context changes, or (3) with an added response cost for button pressing. However, we found that that a 1-point response cost for all button presses facilitated extinction to a greater extent than the absence of response cost. Nevertheless, we observed ABA renewal of button pressing when changing background contexts across phases and resurgence when extinguishing presses on an alternative button. Our findings suggest that MTurk could be a viable platform from which to ask and address questions about extinction and relapse processes, but further procedural refinements will be necessary to improve the replicability of control by experimental contingencies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34149066</pmid><doi>10.1016/j.lmot.2021.101728</doi><orcidid>https://orcid.org/0000-0002-5945-6454</orcidid><orcidid>https://orcid.org/0000-0001-5416-0833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0023-9690
ispartof Learning and motivation, 2021-05, Vol.74, p.101728, Article 101728
issn 0023-9690
1095-9122
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8208628
source ScienceDirect Journals (5 years ago - present)
subjects Amazon Mechanical Turk
Button press
Crowdsourcing
Extinction
Extinction (Learning)
Humans
Operant conditioning
Reinforcement
title Evaluating extinction, renewal, and resurgence of operant behavior in humans with Amazon Mechanical Turk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20extinction,%20renewal,%20and%20resurgence%20of%20operant%20behavior%20in%20humans%20with%20Amazon%20Mechanical%20Turk&rft.jtitle=Learning%20and%20motivation&rft.au=Ritchey,%20Carolyn%20M.&rft.date=2021-05&rft.volume=74&rft.spage=101728&rft.pages=101728-&rft.artnum=101728&rft.issn=0023-9690&rft.eissn=1095-9122&rft_id=info:doi/10.1016/j.lmot.2021.101728&rft_dat=%3Cproquest_pubme%3E2549286288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549286288&rft_id=info:pmid/34149066&rft_els_id=S0023969021000229&rfr_iscdi=true