Searching for Imaging Biomarkers of Psychotic Dysconnectivity

Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological psychiatry : cognitive neuroscience and neuroimaging 2021-12, Vol.6 (12), p.1135-1144
Hauptverfasser: Rodrigue, Amanda L., Mastrovito, Dana, Esteban, Oscar, Durnez, Joke, Koenis, Marinka M.G., Janssen, Ronald, Alexander-Bloch, Aaron, Knowles, Emma M., Mathias, Samuel R., Mollon, Josephine, Pearlson, Godfrey D., Frangou, Sophia, Blangero, John, Poldrack, Russell A., Glahn, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 12
container_start_page 1135
container_title Biological psychiatry : cognitive neuroscience and neuroimaging
container_volume 6
creator Rodrigue, Amanda L.
Mastrovito, Dana
Esteban, Oscar
Durnez, Joke
Koenis, Marinka M.G.
Janssen, Ronald
Alexander-Bloch, Aaron
Knowles, Emma M.
Mathias, Samuel R.
Mollon, Josephine
Pearlson, Godfrey D.
Frangou, Sophia
Blangero, John
Poldrack, Russell A.
Glahn, David C.
description Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging. We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics. Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results. Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.
doi_str_mv 10.1016/j.bpsc.2020.12.002
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2451902220303724</els_id><sourcerecordid>2493004569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</originalsourceid><addsrcrecordid>eNqNkctqGzEUhkVJiIPjF-iizLIQ7EhHl5mBttA4VzC00HYtNBqNLdeWXEl28NtHxo5JNyHa6CB9_7n8B6GPBI8IJuJqPmpWUY8AQ36AEcbwAZ0D42RYY4pPjjFADw1inGOcVRjTmpyhHqUCQHB-jr7-MiromXXTovOheFyq6S6-tn6pwl8TYuG74mfc6plPVhc326i9c0Ynu7Fpe4FOO7WIZnC4--jP3e3v8cNw8uP-cfx9MtSM8zQkmnAAIuqqI6TkrK5KUjYtUYrTVpWiFJS1pqJQalbihpNKd8CY4lVuuhKa9tG3fd7VulmaVhuXglrIVbC5y630ysr_f5ydyanfyAqwAE5ygs-HBMH_W5uY5NJGbRYL5YxfRwmsphgzLuqMwh7VwccYTHcsQ7DcWS_ncme93FkvCchsfRZ9et3gUfJidAYu98CTaXwXtTVOmyOWl1NCDTRPnw_LdPV-emyTSta7sV-7lKVf9lKT97GxJsiDvLUhr0223r41yDPldLSh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493004569</pqid></control><display><type>article</type><title>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Rodrigue, Amanda L. ; Mastrovito, Dana ; Esteban, Oscar ; Durnez, Joke ; Koenis, Marinka M.G. ; Janssen, Ronald ; Alexander-Bloch, Aaron ; Knowles, Emma M. ; Mathias, Samuel R. ; Mollon, Josephine ; Pearlson, Godfrey D. ; Frangou, Sophia ; Blangero, John ; Poldrack, Russell A. ; Glahn, David C.</creator><creatorcontrib>Rodrigue, Amanda L. ; Mastrovito, Dana ; Esteban, Oscar ; Durnez, Joke ; Koenis, Marinka M.G. ; Janssen, Ronald ; Alexander-Bloch, Aaron ; Knowles, Emma M. ; Mathias, Samuel R. ; Mollon, Josephine ; Pearlson, Godfrey D. ; Frangou, Sophia ; Blangero, John ; Poldrack, Russell A. ; Glahn, David C.</creatorcontrib><description>Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging. We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics. Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results. Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.</description><identifier>ISSN: 2451-9022</identifier><identifier>EISSN: 2451-9030</identifier><identifier>DOI: 10.1016/j.bpsc.2020.12.002</identifier><identifier>PMID: 33622655</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Inc</publisher><subject>Biomarkers ; Brain ; Connectivity ; Diffusion Tensor Imaging - methods ; Humans ; Life Sciences &amp; Biomedicine ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; MRI ; Neurosciences ; Neurosciences &amp; Neurology ; Psychosis ; Science &amp; Technology ; White Matter</subject><ispartof>Biological psychiatry : cognitive neuroscience and neuroimaging, 2021-12, Vol.6 (12), p.1135-1144</ispartof><rights>2020 Society of Biological Psychiatry</rights><rights>Copyright © 2020 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000729234700004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</citedby><cites>FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</cites><orcidid>0000-0002-1400-311X ; 0000-0001-8435-6191 ; 0000-0002-7525-5185 ; 0000-0002-3210-6470 ; 0000-0002-4749-6977 ; 0000-0001-6554-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33622655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigue, Amanda L.</creatorcontrib><creatorcontrib>Mastrovito, Dana</creatorcontrib><creatorcontrib>Esteban, Oscar</creatorcontrib><creatorcontrib>Durnez, Joke</creatorcontrib><creatorcontrib>Koenis, Marinka M.G.</creatorcontrib><creatorcontrib>Janssen, Ronald</creatorcontrib><creatorcontrib>Alexander-Bloch, Aaron</creatorcontrib><creatorcontrib>Knowles, Emma M.</creatorcontrib><creatorcontrib>Mathias, Samuel R.</creatorcontrib><creatorcontrib>Mollon, Josephine</creatorcontrib><creatorcontrib>Pearlson, Godfrey D.</creatorcontrib><creatorcontrib>Frangou, Sophia</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Poldrack, Russell A.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><title>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</title><title>Biological psychiatry : cognitive neuroscience and neuroimaging</title><addtitle>BIOL PSYCHIAT-COGN N</addtitle><addtitle>Biol Psychiatry Cogn Neurosci Neuroimaging</addtitle><description>Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging. We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics. Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results. Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.</description><subject>Biomarkers</subject><subject>Brain</subject><subject>Connectivity</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>MRI</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Psychosis</subject><subject>Science &amp; Technology</subject><subject>White Matter</subject><issn>2451-9022</issn><issn>2451-9030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkctqGzEUhkVJiIPjF-iizLIQ7EhHl5mBttA4VzC00HYtNBqNLdeWXEl28NtHxo5JNyHa6CB9_7n8B6GPBI8IJuJqPmpWUY8AQ36AEcbwAZ0D42RYY4pPjjFADw1inGOcVRjTmpyhHqUCQHB-jr7-MiromXXTovOheFyq6S6-tn6pwl8TYuG74mfc6plPVhc326i9c0Ynu7Fpe4FOO7WIZnC4--jP3e3v8cNw8uP-cfx9MtSM8zQkmnAAIuqqI6TkrK5KUjYtUYrTVpWiFJS1pqJQalbihpNKd8CY4lVuuhKa9tG3fd7VulmaVhuXglrIVbC5y630ysr_f5ydyanfyAqwAE5ygs-HBMH_W5uY5NJGbRYL5YxfRwmsphgzLuqMwh7VwccYTHcsQ7DcWS_ncme93FkvCchsfRZ9et3gUfJidAYu98CTaXwXtTVOmyOWl1NCDTRPnw_LdPV-emyTSta7sV-7lKVf9lKT97GxJsiDvLUhr0223r41yDPldLSh</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Rodrigue, Amanda L.</creator><creator>Mastrovito, Dana</creator><creator>Esteban, Oscar</creator><creator>Durnez, Joke</creator><creator>Koenis, Marinka M.G.</creator><creator>Janssen, Ronald</creator><creator>Alexander-Bloch, Aaron</creator><creator>Knowles, Emma M.</creator><creator>Mathias, Samuel R.</creator><creator>Mollon, Josephine</creator><creator>Pearlson, Godfrey D.</creator><creator>Frangou, Sophia</creator><creator>Blangero, John</creator><creator>Poldrack, Russell A.</creator><creator>Glahn, David C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1400-311X</orcidid><orcidid>https://orcid.org/0000-0001-8435-6191</orcidid><orcidid>https://orcid.org/0000-0002-7525-5185</orcidid><orcidid>https://orcid.org/0000-0002-3210-6470</orcidid><orcidid>https://orcid.org/0000-0002-4749-6977</orcidid><orcidid>https://orcid.org/0000-0001-6554-1893</orcidid></search><sort><creationdate>20211201</creationdate><title>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</title><author>Rodrigue, Amanda L. ; Mastrovito, Dana ; Esteban, Oscar ; Durnez, Joke ; Koenis, Marinka M.G. ; Janssen, Ronald ; Alexander-Bloch, Aaron ; Knowles, Emma M. ; Mathias, Samuel R. ; Mollon, Josephine ; Pearlson, Godfrey D. ; Frangou, Sophia ; Blangero, John ; Poldrack, Russell A. ; Glahn, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomarkers</topic><topic>Brain</topic><topic>Connectivity</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>MRI</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Psychosis</topic><topic>Science &amp; Technology</topic><topic>White Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigue, Amanda L.</creatorcontrib><creatorcontrib>Mastrovito, Dana</creatorcontrib><creatorcontrib>Esteban, Oscar</creatorcontrib><creatorcontrib>Durnez, Joke</creatorcontrib><creatorcontrib>Koenis, Marinka M.G.</creatorcontrib><creatorcontrib>Janssen, Ronald</creatorcontrib><creatorcontrib>Alexander-Bloch, Aaron</creatorcontrib><creatorcontrib>Knowles, Emma M.</creatorcontrib><creatorcontrib>Mathias, Samuel R.</creatorcontrib><creatorcontrib>Mollon, Josephine</creatorcontrib><creatorcontrib>Pearlson, Godfrey D.</creatorcontrib><creatorcontrib>Frangou, Sophia</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Poldrack, Russell A.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological psychiatry : cognitive neuroscience and neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigue, Amanda L.</au><au>Mastrovito, Dana</au><au>Esteban, Oscar</au><au>Durnez, Joke</au><au>Koenis, Marinka M.G.</au><au>Janssen, Ronald</au><au>Alexander-Bloch, Aaron</au><au>Knowles, Emma M.</au><au>Mathias, Samuel R.</au><au>Mollon, Josephine</au><au>Pearlson, Godfrey D.</au><au>Frangou, Sophia</au><au>Blangero, John</au><au>Poldrack, Russell A.</au><au>Glahn, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</atitle><jtitle>Biological psychiatry : cognitive neuroscience and neuroimaging</jtitle><stitle>BIOL PSYCHIAT-COGN N</stitle><addtitle>Biol Psychiatry Cogn Neurosci Neuroimaging</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>6</volume><issue>12</issue><spage>1135</spage><epage>1144</epage><pages>1135-1144</pages><issn>2451-9022</issn><eissn>2451-9030</eissn><abstract>Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging. We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics. Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results. Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Inc</pub><pmid>33622655</pmid><doi>10.1016/j.bpsc.2020.12.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1400-311X</orcidid><orcidid>https://orcid.org/0000-0001-8435-6191</orcidid><orcidid>https://orcid.org/0000-0002-7525-5185</orcidid><orcidid>https://orcid.org/0000-0002-3210-6470</orcidid><orcidid>https://orcid.org/0000-0002-4749-6977</orcidid><orcidid>https://orcid.org/0000-0001-6554-1893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2451-9022
ispartof Biological psychiatry : cognitive neuroscience and neuroimaging, 2021-12, Vol.6 (12), p.1135-1144
issn 2451-9022
2451-9030
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206251
source MEDLINE; Alma/SFX Local Collection
subjects Biomarkers
Brain
Connectivity
Diffusion Tensor Imaging - methods
Humans
Life Sciences & Biomedicine
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
MRI
Neurosciences
Neurosciences & Neurology
Psychosis
Science & Technology
White Matter
title Searching for Imaging Biomarkers of Psychotic Dysconnectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20for%20Imaging%20Biomarkers%20of%20Psychotic%20Dysconnectivity&rft.jtitle=Biological%20psychiatry%20:%20cognitive%20neuroscience%20and%20neuroimaging&rft.au=Rodrigue,%20Amanda%20L.&rft.date=2021-12-01&rft.volume=6&rft.issue=12&rft.spage=1135&rft.epage=1144&rft.pages=1135-1144&rft.issn=2451-9022&rft.eissn=2451-9030&rft_id=info:doi/10.1016/j.bpsc.2020.12.002&rft_dat=%3Cproquest_webof%3E2493004569%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493004569&rft_id=info:pmid/33622655&rft_els_id=S2451902220303724&rfr_iscdi=true