Searching for Imaging Biomarkers of Psychotic Dysconnectivity
Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonan...
Gespeichert in:
Veröffentlicht in: | Biological psychiatry : cognitive neuroscience and neuroimaging 2021-12, Vol.6 (12), p.1135-1144 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1144 |
---|---|
container_issue | 12 |
container_start_page | 1135 |
container_title | Biological psychiatry : cognitive neuroscience and neuroimaging |
container_volume | 6 |
creator | Rodrigue, Amanda L. Mastrovito, Dana Esteban, Oscar Durnez, Joke Koenis, Marinka M.G. Janssen, Ronald Alexander-Bloch, Aaron Knowles, Emma M. Mathias, Samuel R. Mollon, Josephine Pearlson, Godfrey D. Frangou, Sophia Blangero, John Poldrack, Russell A. Glahn, David C. |
description | Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging.
We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics.
Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results.
Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers. |
doi_str_mv | 10.1016/j.bpsc.2020.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2451902220303724</els_id><sourcerecordid>2493004569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</originalsourceid><addsrcrecordid>eNqNkctqGzEUhkVJiIPjF-iizLIQ7EhHl5mBttA4VzC00HYtNBqNLdeWXEl28NtHxo5JNyHa6CB9_7n8B6GPBI8IJuJqPmpWUY8AQ36AEcbwAZ0D42RYY4pPjjFADw1inGOcVRjTmpyhHqUCQHB-jr7-MiromXXTovOheFyq6S6-tn6pwl8TYuG74mfc6plPVhc326i9c0Ynu7Fpe4FOO7WIZnC4--jP3e3v8cNw8uP-cfx9MtSM8zQkmnAAIuqqI6TkrK5KUjYtUYrTVpWiFJS1pqJQalbihpNKd8CY4lVuuhKa9tG3fd7VulmaVhuXglrIVbC5y630ysr_f5ydyanfyAqwAE5ygs-HBMH_W5uY5NJGbRYL5YxfRwmsphgzLuqMwh7VwccYTHcsQ7DcWS_ncme93FkvCchsfRZ9et3gUfJidAYu98CTaXwXtTVOmyOWl1NCDTRPnw_LdPV-emyTSta7sV-7lKVf9lKT97GxJsiDvLUhr0223r41yDPldLSh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493004569</pqid></control><display><type>article</type><title>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Rodrigue, Amanda L. ; Mastrovito, Dana ; Esteban, Oscar ; Durnez, Joke ; Koenis, Marinka M.G. ; Janssen, Ronald ; Alexander-Bloch, Aaron ; Knowles, Emma M. ; Mathias, Samuel R. ; Mollon, Josephine ; Pearlson, Godfrey D. ; Frangou, Sophia ; Blangero, John ; Poldrack, Russell A. ; Glahn, David C.</creator><creatorcontrib>Rodrigue, Amanda L. ; Mastrovito, Dana ; Esteban, Oscar ; Durnez, Joke ; Koenis, Marinka M.G. ; Janssen, Ronald ; Alexander-Bloch, Aaron ; Knowles, Emma M. ; Mathias, Samuel R. ; Mollon, Josephine ; Pearlson, Godfrey D. ; Frangou, Sophia ; Blangero, John ; Poldrack, Russell A. ; Glahn, David C.</creatorcontrib><description>Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging.
We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics.
Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results.
Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.</description><identifier>ISSN: 2451-9022</identifier><identifier>EISSN: 2451-9030</identifier><identifier>DOI: 10.1016/j.bpsc.2020.12.002</identifier><identifier>PMID: 33622655</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Inc</publisher><subject>Biomarkers ; Brain ; Connectivity ; Diffusion Tensor Imaging - methods ; Humans ; Life Sciences & Biomedicine ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; MRI ; Neurosciences ; Neurosciences & Neurology ; Psychosis ; Science & Technology ; White Matter</subject><ispartof>Biological psychiatry : cognitive neuroscience and neuroimaging, 2021-12, Vol.6 (12), p.1135-1144</ispartof><rights>2020 Society of Biological Psychiatry</rights><rights>Copyright © 2020 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000729234700004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</citedby><cites>FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</cites><orcidid>0000-0002-1400-311X ; 0000-0001-8435-6191 ; 0000-0002-7525-5185 ; 0000-0002-3210-6470 ; 0000-0002-4749-6977 ; 0000-0001-6554-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33622655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigue, Amanda L.</creatorcontrib><creatorcontrib>Mastrovito, Dana</creatorcontrib><creatorcontrib>Esteban, Oscar</creatorcontrib><creatorcontrib>Durnez, Joke</creatorcontrib><creatorcontrib>Koenis, Marinka M.G.</creatorcontrib><creatorcontrib>Janssen, Ronald</creatorcontrib><creatorcontrib>Alexander-Bloch, Aaron</creatorcontrib><creatorcontrib>Knowles, Emma M.</creatorcontrib><creatorcontrib>Mathias, Samuel R.</creatorcontrib><creatorcontrib>Mollon, Josephine</creatorcontrib><creatorcontrib>Pearlson, Godfrey D.</creatorcontrib><creatorcontrib>Frangou, Sophia</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Poldrack, Russell A.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><title>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</title><title>Biological psychiatry : cognitive neuroscience and neuroimaging</title><addtitle>BIOL PSYCHIAT-COGN N</addtitle><addtitle>Biol Psychiatry Cogn Neurosci Neuroimaging</addtitle><description>Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging.
We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics.
Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results.
Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.</description><subject>Biomarkers</subject><subject>Brain</subject><subject>Connectivity</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>MRI</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Psychosis</subject><subject>Science & Technology</subject><subject>White Matter</subject><issn>2451-9022</issn><issn>2451-9030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkctqGzEUhkVJiIPjF-iizLIQ7EhHl5mBttA4VzC00HYtNBqNLdeWXEl28NtHxo5JNyHa6CB9_7n8B6GPBI8IJuJqPmpWUY8AQ36AEcbwAZ0D42RYY4pPjjFADw1inGOcVRjTmpyhHqUCQHB-jr7-MiromXXTovOheFyq6S6-tn6pwl8TYuG74mfc6plPVhc326i9c0Ynu7Fpe4FOO7WIZnC4--jP3e3v8cNw8uP-cfx9MtSM8zQkmnAAIuqqI6TkrK5KUjYtUYrTVpWiFJS1pqJQalbihpNKd8CY4lVuuhKa9tG3fd7VulmaVhuXglrIVbC5y630ysr_f5ydyanfyAqwAE5ygs-HBMH_W5uY5NJGbRYL5YxfRwmsphgzLuqMwh7VwccYTHcsQ7DcWS_ncme93FkvCchsfRZ9et3gUfJidAYu98CTaXwXtTVOmyOWl1NCDTRPnw_LdPV-emyTSta7sV-7lKVf9lKT97GxJsiDvLUhr0223r41yDPldLSh</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Rodrigue, Amanda L.</creator><creator>Mastrovito, Dana</creator><creator>Esteban, Oscar</creator><creator>Durnez, Joke</creator><creator>Koenis, Marinka M.G.</creator><creator>Janssen, Ronald</creator><creator>Alexander-Bloch, Aaron</creator><creator>Knowles, Emma M.</creator><creator>Mathias, Samuel R.</creator><creator>Mollon, Josephine</creator><creator>Pearlson, Godfrey D.</creator><creator>Frangou, Sophia</creator><creator>Blangero, John</creator><creator>Poldrack, Russell A.</creator><creator>Glahn, David C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1400-311X</orcidid><orcidid>https://orcid.org/0000-0001-8435-6191</orcidid><orcidid>https://orcid.org/0000-0002-7525-5185</orcidid><orcidid>https://orcid.org/0000-0002-3210-6470</orcidid><orcidid>https://orcid.org/0000-0002-4749-6977</orcidid><orcidid>https://orcid.org/0000-0001-6554-1893</orcidid></search><sort><creationdate>20211201</creationdate><title>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</title><author>Rodrigue, Amanda L. ; Mastrovito, Dana ; Esteban, Oscar ; Durnez, Joke ; Koenis, Marinka M.G. ; Janssen, Ronald ; Alexander-Bloch, Aaron ; Knowles, Emma M. ; Mathias, Samuel R. ; Mollon, Josephine ; Pearlson, Godfrey D. ; Frangou, Sophia ; Blangero, John ; Poldrack, Russell A. ; Glahn, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1c15221698f1175498717bd1aa53da767634de8327c470b518cf244a5800186c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomarkers</topic><topic>Brain</topic><topic>Connectivity</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>MRI</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Psychosis</topic><topic>Science & Technology</topic><topic>White Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigue, Amanda L.</creatorcontrib><creatorcontrib>Mastrovito, Dana</creatorcontrib><creatorcontrib>Esteban, Oscar</creatorcontrib><creatorcontrib>Durnez, Joke</creatorcontrib><creatorcontrib>Koenis, Marinka M.G.</creatorcontrib><creatorcontrib>Janssen, Ronald</creatorcontrib><creatorcontrib>Alexander-Bloch, Aaron</creatorcontrib><creatorcontrib>Knowles, Emma M.</creatorcontrib><creatorcontrib>Mathias, Samuel R.</creatorcontrib><creatorcontrib>Mollon, Josephine</creatorcontrib><creatorcontrib>Pearlson, Godfrey D.</creatorcontrib><creatorcontrib>Frangou, Sophia</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Poldrack, Russell A.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological psychiatry : cognitive neuroscience and neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigue, Amanda L.</au><au>Mastrovito, Dana</au><au>Esteban, Oscar</au><au>Durnez, Joke</au><au>Koenis, Marinka M.G.</au><au>Janssen, Ronald</au><au>Alexander-Bloch, Aaron</au><au>Knowles, Emma M.</au><au>Mathias, Samuel R.</au><au>Mollon, Josephine</au><au>Pearlson, Godfrey D.</au><au>Frangou, Sophia</au><au>Blangero, John</au><au>Poldrack, Russell A.</au><au>Glahn, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching for Imaging Biomarkers of Psychotic Dysconnectivity</atitle><jtitle>Biological psychiatry : cognitive neuroscience and neuroimaging</jtitle><stitle>BIOL PSYCHIAT-COGN N</stitle><addtitle>Biol Psychiatry Cogn Neurosci Neuroimaging</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>6</volume><issue>12</issue><spage>1135</spage><epage>1144</epage><pages>1135-1144</pages><issn>2451-9022</issn><eissn>2451-9030</eissn><abstract>Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging.
We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics.
Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results.
Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Inc</pub><pmid>33622655</pmid><doi>10.1016/j.bpsc.2020.12.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1400-311X</orcidid><orcidid>https://orcid.org/0000-0001-8435-6191</orcidid><orcidid>https://orcid.org/0000-0002-7525-5185</orcidid><orcidid>https://orcid.org/0000-0002-3210-6470</orcidid><orcidid>https://orcid.org/0000-0002-4749-6977</orcidid><orcidid>https://orcid.org/0000-0001-6554-1893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2451-9022 |
ispartof | Biological psychiatry : cognitive neuroscience and neuroimaging, 2021-12, Vol.6 (12), p.1135-1144 |
issn | 2451-9022 2451-9030 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206251 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Biomarkers Brain Connectivity Diffusion Tensor Imaging - methods Humans Life Sciences & Biomedicine Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods MRI Neurosciences Neurosciences & Neurology Psychosis Science & Technology White Matter |
title | Searching for Imaging Biomarkers of Psychotic Dysconnectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20for%20Imaging%20Biomarkers%20of%20Psychotic%20Dysconnectivity&rft.jtitle=Biological%20psychiatry%20:%20cognitive%20neuroscience%20and%20neuroimaging&rft.au=Rodrigue,%20Amanda%20L.&rft.date=2021-12-01&rft.volume=6&rft.issue=12&rft.spage=1135&rft.epage=1144&rft.pages=1135-1144&rft.issn=2451-9022&rft.eissn=2451-9030&rft_id=info:doi/10.1016/j.bpsc.2020.12.002&rft_dat=%3Cproquest_webof%3E2493004569%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493004569&rft_id=info:pmid/33622655&rft_els_id=S2451902220303724&rfr_iscdi=true |