High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing
•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during an...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2021-07, Vol.191, p.78-86 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | Methods (San Diego, Calif.) |
container_volume | 191 |
creator | Gleeson, Diane Sethi, Debarati Platte, Radka Burvill, Jonathan Barrett, Daniel Akhtar, Shaheen Bruntraeger, Michaela Bottomley, Joanna Mouse Genetics Project, Sanger Bussell, James Ryder, Edward |
description | •Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis.
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects.
One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database. |
doi_str_mv | 10.1016/j.ymeth.2020.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8205115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202320302267</els_id><sourcerecordid>2454106737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</originalsourceid><addsrcrecordid>eNp9UcFO3DAQtSoqoJQvqFT5yCWLHSd2fKBShaAgIfXSXms5zmziVWJvbQc1f1-nSxFc8GWsmTdv3sxD6BMlG0oov9xtlgnSsClJuWY2hNJ36JQSWReSMnK0_ite5DI7QR9i3BFCaCmaY3TCGJG8ZM0p-nVn-6FIQ_BzP-znhHtwPi1763rst3hYq4Of_Oj7BU9z0i7hyc8RcExBWxdxu2AHf1KRGyHoZL3DEX7P4Ezm-Ijeb_UY4fwpnqGftzc_ru-Kh-_f7q-_PhSmqmUqZM1bYzTnUkgpWib4tqnKllKqmWSCGFPKikGXX9V2WTmIKu8pmtpIzlvKztCXA-9-bifoDLisblT7YCcdFuW1Va8rzg6q94-qKUlNaZ0JLp4Igs_iY1KTjQbGUTvI66qyqitKuGAiQ9kBaoKPMcD2eQwlanVG7dQ_Z9TqzJrMzuSuzy8VPvf8tyIDrg4AyHd6tBBUNDZfETobwCTVefvmgL_AAKMS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454106737</pqid></control><display><type>article</type><title>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gleeson, Diane ; Sethi, Debarati ; Platte, Radka ; Burvill, Jonathan ; Barrett, Daniel ; Akhtar, Shaheen ; Bruntraeger, Michaela ; Bottomley, Joanna ; Mouse Genetics Project, Sanger ; Bussell, James ; Ryder, Edward</creator><creatorcontrib>Gleeson, Diane ; Sethi, Debarati ; Platte, Radka ; Burvill, Jonathan ; Barrett, Daniel ; Akhtar, Shaheen ; Bruntraeger, Michaela ; Bottomley, Joanna ; Mouse Genetics Project, Sanger ; Bussell, James ; Ryder, Edward</creatorcontrib><description>•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis.
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects.
One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.</description><identifier>ISSN: 1046-2023</identifier><identifier>ISSN: 1095-9130</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2020.10.011</identifier><identifier>PMID: 33096238</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Animals ; CRISPR ; Genotype ; Genotyping ; Genotyping Techniques ; High-Throughput Nucleotide Sequencing ; Mice ; Mice, Mutant Strains ; Mouse ; Mutant ; NGS ; Polymerase Chain Reaction</subject><ispartof>Methods (San Diego, Calif.), 2021-07, Vol.191, p.78-86</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</citedby><cites>FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1046202320302267$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33096238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gleeson, Diane</creatorcontrib><creatorcontrib>Sethi, Debarati</creatorcontrib><creatorcontrib>Platte, Radka</creatorcontrib><creatorcontrib>Burvill, Jonathan</creatorcontrib><creatorcontrib>Barrett, Daniel</creatorcontrib><creatorcontrib>Akhtar, Shaheen</creatorcontrib><creatorcontrib>Bruntraeger, Michaela</creatorcontrib><creatorcontrib>Bottomley, Joanna</creatorcontrib><creatorcontrib>Mouse Genetics Project, Sanger</creatorcontrib><creatorcontrib>Bussell, James</creatorcontrib><creatorcontrib>Ryder, Edward</creatorcontrib><title>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis.
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects.
One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.</description><subject>Alleles</subject><subject>Animals</subject><subject>CRISPR</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>Genotyping Techniques</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mouse</subject><subject>Mutant</subject><subject>NGS</subject><subject>Polymerase Chain Reaction</subject><issn>1046-2023</issn><issn>1095-9130</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFO3DAQtSoqoJQvqFT5yCWLHSd2fKBShaAgIfXSXms5zmziVWJvbQc1f1-nSxFc8GWsmTdv3sxD6BMlG0oov9xtlgnSsClJuWY2hNJ36JQSWReSMnK0_ite5DI7QR9i3BFCaCmaY3TCGJG8ZM0p-nVn-6FIQ_BzP-znhHtwPi1763rst3hYq4Of_Oj7BU9z0i7hyc8RcExBWxdxu2AHf1KRGyHoZL3DEX7P4Ezm-Ijeb_UY4fwpnqGftzc_ru-Kh-_f7q-_PhSmqmUqZM1bYzTnUkgpWib4tqnKllKqmWSCGFPKikGXX9V2WTmIKu8pmtpIzlvKztCXA-9-bifoDLisblT7YCcdFuW1Va8rzg6q94-qKUlNaZ0JLp4Igs_iY1KTjQbGUTvI66qyqitKuGAiQ9kBaoKPMcD2eQwlanVG7dQ_Z9TqzJrMzuSuzy8VPvf8tyIDrg4AyHd6tBBUNDZfETobwCTVefvmgL_AAKMS</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Gleeson, Diane</creator><creator>Sethi, Debarati</creator><creator>Platte, Radka</creator><creator>Burvill, Jonathan</creator><creator>Barrett, Daniel</creator><creator>Akhtar, Shaheen</creator><creator>Bruntraeger, Michaela</creator><creator>Bottomley, Joanna</creator><creator>Mouse Genetics Project, Sanger</creator><creator>Bussell, James</creator><creator>Ryder, Edward</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202107</creationdate><title>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</title><author>Gleeson, Diane ; Sethi, Debarati ; Platte, Radka ; Burvill, Jonathan ; Barrett, Daniel ; Akhtar, Shaheen ; Bruntraeger, Michaela ; Bottomley, Joanna ; Mouse Genetics Project, Sanger ; Bussell, James ; Ryder, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>CRISPR</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>Genotyping Techniques</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mouse</topic><topic>Mutant</topic><topic>NGS</topic><topic>Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gleeson, Diane</creatorcontrib><creatorcontrib>Sethi, Debarati</creatorcontrib><creatorcontrib>Platte, Radka</creatorcontrib><creatorcontrib>Burvill, Jonathan</creatorcontrib><creatorcontrib>Barrett, Daniel</creatorcontrib><creatorcontrib>Akhtar, Shaheen</creatorcontrib><creatorcontrib>Bruntraeger, Michaela</creatorcontrib><creatorcontrib>Bottomley, Joanna</creatorcontrib><creatorcontrib>Mouse Genetics Project, Sanger</creatorcontrib><creatorcontrib>Bussell, James</creatorcontrib><creatorcontrib>Ryder, Edward</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gleeson, Diane</au><au>Sethi, Debarati</au><au>Platte, Radka</au><au>Burvill, Jonathan</au><au>Barrett, Daniel</au><au>Akhtar, Shaheen</au><au>Bruntraeger, Michaela</au><au>Bottomley, Joanna</au><au>Mouse Genetics Project, Sanger</au><au>Bussell, James</au><au>Ryder, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2021-07</date><risdate>2021</risdate><volume>191</volume><spage>78</spage><epage>86</epage><pages>78-86</pages><issn>1046-2023</issn><issn>1095-9130</issn><eissn>1095-9130</eissn><abstract>•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis.
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects.
One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33096238</pmid><doi>10.1016/j.ymeth.2020.10.011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2021-07, Vol.191, p.78-86 |
issn | 1046-2023 1095-9130 1095-9130 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8205115 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alleles Animals CRISPR Genotype Genotyping Genotyping Techniques High-Throughput Nucleotide Sequencing Mice Mice, Mutant Strains Mouse Mutant NGS Polymerase Chain Reaction |
title | High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20genotyping%20of%20high-homology%20mutant%20mouse%20strains%20by%20next-generation%20sequencing&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Gleeson,%20Diane&rft.date=2021-07&rft.volume=191&rft.spage=78&rft.epage=86&rft.pages=78-86&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2020.10.011&rft_dat=%3Cproquest_pubme%3E2454106737%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454106737&rft_id=info:pmid/33096238&rft_els_id=S1046202320302267&rfr_iscdi=true |