High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing

•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2021-07, Vol.191, p.78-86
Hauptverfasser: Gleeson, Diane, Sethi, Debarati, Platte, Radka, Burvill, Jonathan, Barrett, Daniel, Akhtar, Shaheen, Bruntraeger, Michaela, Bottomley, Joanna, Mouse Genetics Project, Sanger, Bussell, James, Ryder, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 78
container_title Methods (San Diego, Calif.)
container_volume 191
creator Gleeson, Diane
Sethi, Debarati
Platte, Radka
Burvill, Jonathan
Barrett, Daniel
Akhtar, Shaheen
Bruntraeger, Michaela
Bottomley, Joanna
Mouse Genetics Project, Sanger
Bussell, James
Ryder, Edward
description •Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis. Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.
doi_str_mv 10.1016/j.ymeth.2020.10.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8205115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202320302267</els_id><sourcerecordid>2454106737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</originalsourceid><addsrcrecordid>eNp9UcFO3DAQtSoqoJQvqFT5yCWLHSd2fKBShaAgIfXSXms5zmziVWJvbQc1f1-nSxFc8GWsmTdv3sxD6BMlG0oov9xtlgnSsClJuWY2hNJ36JQSWReSMnK0_ite5DI7QR9i3BFCaCmaY3TCGJG8ZM0p-nVn-6FIQ_BzP-znhHtwPi1763rst3hYq4Of_Oj7BU9z0i7hyc8RcExBWxdxu2AHf1KRGyHoZL3DEX7P4Ezm-Ijeb_UY4fwpnqGftzc_ru-Kh-_f7q-_PhSmqmUqZM1bYzTnUkgpWib4tqnKllKqmWSCGFPKikGXX9V2WTmIKu8pmtpIzlvKztCXA-9-bifoDLisblT7YCcdFuW1Va8rzg6q94-qKUlNaZ0JLp4Igs_iY1KTjQbGUTvI66qyqitKuGAiQ9kBaoKPMcD2eQwlanVG7dQ_Z9TqzJrMzuSuzy8VPvf8tyIDrg4AyHd6tBBUNDZfETobwCTVefvmgL_AAKMS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454106737</pqid></control><display><type>article</type><title>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gleeson, Diane ; Sethi, Debarati ; Platte, Radka ; Burvill, Jonathan ; Barrett, Daniel ; Akhtar, Shaheen ; Bruntraeger, Michaela ; Bottomley, Joanna ; Mouse Genetics Project, Sanger ; Bussell, James ; Ryder, Edward</creator><creatorcontrib>Gleeson, Diane ; Sethi, Debarati ; Platte, Radka ; Burvill, Jonathan ; Barrett, Daniel ; Akhtar, Shaheen ; Bruntraeger, Michaela ; Bottomley, Joanna ; Mouse Genetics Project, Sanger ; Bussell, James ; Ryder, Edward</creatorcontrib><description>•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis. Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.</description><identifier>ISSN: 1046-2023</identifier><identifier>ISSN: 1095-9130</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2020.10.011</identifier><identifier>PMID: 33096238</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Animals ; CRISPR ; Genotype ; Genotyping ; Genotyping Techniques ; High-Throughput Nucleotide Sequencing ; Mice ; Mice, Mutant Strains ; Mouse ; Mutant ; NGS ; Polymerase Chain Reaction</subject><ispartof>Methods (San Diego, Calif.), 2021-07, Vol.191, p.78-86</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</citedby><cites>FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1046202320302267$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33096238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gleeson, Diane</creatorcontrib><creatorcontrib>Sethi, Debarati</creatorcontrib><creatorcontrib>Platte, Radka</creatorcontrib><creatorcontrib>Burvill, Jonathan</creatorcontrib><creatorcontrib>Barrett, Daniel</creatorcontrib><creatorcontrib>Akhtar, Shaheen</creatorcontrib><creatorcontrib>Bruntraeger, Michaela</creatorcontrib><creatorcontrib>Bottomley, Joanna</creatorcontrib><creatorcontrib>Mouse Genetics Project, Sanger</creatorcontrib><creatorcontrib>Bussell, James</creatorcontrib><creatorcontrib>Ryder, Edward</creatorcontrib><title>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis. Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.</description><subject>Alleles</subject><subject>Animals</subject><subject>CRISPR</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>Genotyping Techniques</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mouse</subject><subject>Mutant</subject><subject>NGS</subject><subject>Polymerase Chain Reaction</subject><issn>1046-2023</issn><issn>1095-9130</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFO3DAQtSoqoJQvqFT5yCWLHSd2fKBShaAgIfXSXms5zmziVWJvbQc1f1-nSxFc8GWsmTdv3sxD6BMlG0oov9xtlgnSsClJuWY2hNJ36JQSWReSMnK0_ite5DI7QR9i3BFCaCmaY3TCGJG8ZM0p-nVn-6FIQ_BzP-znhHtwPi1763rst3hYq4Of_Oj7BU9z0i7hyc8RcExBWxdxu2AHf1KRGyHoZL3DEX7P4Ezm-Ijeb_UY4fwpnqGftzc_ru-Kh-_f7q-_PhSmqmUqZM1bYzTnUkgpWib4tqnKllKqmWSCGFPKikGXX9V2WTmIKu8pmtpIzlvKztCXA-9-bifoDLisblT7YCcdFuW1Va8rzg6q94-qKUlNaZ0JLp4Igs_iY1KTjQbGUTvI66qyqitKuGAiQ9kBaoKPMcD2eQwlanVG7dQ_Z9TqzJrMzuSuzy8VPvf8tyIDrg4AyHd6tBBUNDZfETobwCTVefvmgL_AAKMS</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Gleeson, Diane</creator><creator>Sethi, Debarati</creator><creator>Platte, Radka</creator><creator>Burvill, Jonathan</creator><creator>Barrett, Daniel</creator><creator>Akhtar, Shaheen</creator><creator>Bruntraeger, Michaela</creator><creator>Bottomley, Joanna</creator><creator>Mouse Genetics Project, Sanger</creator><creator>Bussell, James</creator><creator>Ryder, Edward</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202107</creationdate><title>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</title><author>Gleeson, Diane ; Sethi, Debarati ; Platte, Radka ; Burvill, Jonathan ; Barrett, Daniel ; Akhtar, Shaheen ; Bruntraeger, Michaela ; Bottomley, Joanna ; Mouse Genetics Project, Sanger ; Bussell, James ; Ryder, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-956bcca6697997b376f842b111a39370cc2943edddd4bd623e74095785c966b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>CRISPR</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>Genotyping Techniques</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mouse</topic><topic>Mutant</topic><topic>NGS</topic><topic>Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gleeson, Diane</creatorcontrib><creatorcontrib>Sethi, Debarati</creatorcontrib><creatorcontrib>Platte, Radka</creatorcontrib><creatorcontrib>Burvill, Jonathan</creatorcontrib><creatorcontrib>Barrett, Daniel</creatorcontrib><creatorcontrib>Akhtar, Shaheen</creatorcontrib><creatorcontrib>Bruntraeger, Michaela</creatorcontrib><creatorcontrib>Bottomley, Joanna</creatorcontrib><creatorcontrib>Mouse Genetics Project, Sanger</creatorcontrib><creatorcontrib>Bussell, James</creatorcontrib><creatorcontrib>Ryder, Edward</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gleeson, Diane</au><au>Sethi, Debarati</au><au>Platte, Radka</au><au>Burvill, Jonathan</au><au>Barrett, Daniel</au><au>Akhtar, Shaheen</au><au>Bruntraeger, Michaela</au><au>Bottomley, Joanna</au><au>Mouse Genetics Project, Sanger</au><au>Bussell, James</au><au>Ryder, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2021-07</date><risdate>2021</risdate><volume>191</volume><spage>78</spage><epage>86</epage><pages>78-86</pages><issn>1046-2023</issn><issn>1095-9130</issn><eissn>1095-9130</eissn><abstract>•Next generation sequencing is a scalable solution to genotyping mutant mice.•Ratios of wild type and mutant sequence counts are used to call the genotype.•Hundreds of samples can be multiplexed into one sequencing experiment.•Amplification of high-homology genes can be easily filtered out during analysis. Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33096238</pmid><doi>10.1016/j.ymeth.2020.10.011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2021-07, Vol.191, p.78-86
issn 1046-2023
1095-9130
1095-9130
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8205115
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alleles
Animals
CRISPR
Genotype
Genotyping
Genotyping Techniques
High-Throughput Nucleotide Sequencing
Mice
Mice, Mutant Strains
Mouse
Mutant
NGS
Polymerase Chain Reaction
title High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20genotyping%20of%20high-homology%20mutant%20mouse%20strains%20by%20next-generation%20sequencing&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Gleeson,%20Diane&rft.date=2021-07&rft.volume=191&rft.spage=78&rft.epage=86&rft.pages=78-86&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2020.10.011&rft_dat=%3Cproquest_pubme%3E2454106737%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454106737&rft_id=info:pmid/33096238&rft_els_id=S1046202320302267&rfr_iscdi=true