Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization
Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (...
Gespeichert in:
Veröffentlicht in: | Frontiers in microbiology 2021-06, Vol.12, p.653027-653027, Article 653027 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 653027 |
---|---|
container_issue | |
container_start_page | 653027 |
container_title | Frontiers in microbiology |
container_volume | 12 |
creator | Llimos, Miquel Segarra, Guillem Sancho-Adamson, Marc Trillas, M. Isabel Romanya, Joan |
description | Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroResp(TM). The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N-2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with compo |
doi_str_mv | 10.3389/fmicb.2021.653027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8203829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfa4341c04764725a28271d707b4b603</doaj_id><sourcerecordid>2543454755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-70d76cabcba7c8f2b77b941289a859443b53ef7f1f59d3aa5325fd3e93c4eea03</originalsourceid><addsrcrecordid>eNqNUl1rFDEUHUSxpfYH-JZHQXbNd2ZehLK0ulDZhyr4Fm4yyZoyk6zJTEV_vdmdUuybgSSX5JyTm3tu07wleM1Y233wY7BmTTElaykYpupFc06k5Ksaf3_5T3zWXJZyj-vgmNb1dXPGOOG4Y-K8ydvxAHZCyaPdEB4cuoPDEOK-IIg92uU9xGDR1ehiX-dUUIroLoUBfQk2JxNgQJs0jnMMU3AL6dp7Z49IX0HR5Qq5cXkKQ_gDU0jxTfPKw1Dc5eN-0Xy7uf66-by63X3abq5uV5ZzOq0U7pW0YKwBZVtPjVKm44S2HbSi45wZwZxXnnjR9QxAMCp8z1zHLHcOMLtototun-BeH3IYIf_WCYI-HaS811DTsoPT1gOvNbGYK8kVFUBbqkivsDLcSMyq1sdF6zCb0fW2lqL-65no85sYfuh9etAtxaylXRV49yiQ08_ZlUmPoVg3DBBdmoumoiYguBKiQskCrQUuJTv_9AzB-mi9Plmvj9brxfrKaRfOL2eSLza4aN0Tr5ouJaGSyWMXkE2YTkZs0hynSn3__1T2FyXrwvw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543454755</pqid></control><display><type>article</type><title>Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Llimos, Miquel ; Segarra, Guillem ; Sancho-Adamson, Marc ; Trillas, M. Isabel ; Romanya, Joan</creator><creatorcontrib>Llimos, Miquel ; Segarra, Guillem ; Sancho-Adamson, Marc ; Trillas, M. Isabel ; Romanya, Joan</creatorcontrib><description>Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroResp(TM). The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N-2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2021.653027</identifier><identifier>PMID: 34140935</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>arbuscular mycorrhizal ; compost ; DNA high-throughput sequencing ; Life Sciences & Biomedicine ; Microbiology ; microbiome ; MicroRespTM ; Science & Technology ; soil fertility</subject><ispartof>Frontiers in microbiology, 2021-06, Vol.12, p.653027-653027, Article 653027</ispartof><rights>Copyright © 2021 Llimós, Segarra, Sancho-Adamson, Trillas and Romanyà. 2021 Llimós, Segarra, Sancho-Adamson, Trillas and Romanyà</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000661263600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-70d76cabcba7c8f2b77b941289a859443b53ef7f1f59d3aa5325fd3e93c4eea03</citedby><cites>FETCH-LOGICAL-c442t-70d76cabcba7c8f2b77b941289a859443b53ef7f1f59d3aa5325fd3e93c4eea03</cites><orcidid>0000-0003-1634-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203829/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids></links><search><creatorcontrib>Llimos, Miquel</creatorcontrib><creatorcontrib>Segarra, Guillem</creatorcontrib><creatorcontrib>Sancho-Adamson, Marc</creatorcontrib><creatorcontrib>Trillas, M. Isabel</creatorcontrib><creatorcontrib>Romanya, Joan</creatorcontrib><title>Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization</title><title>Frontiers in microbiology</title><addtitle>FRONT MICROBIOL</addtitle><description>Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroResp(TM). The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N-2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.</description><subject>arbuscular mycorrhizal</subject><subject>compost</subject><subject>DNA high-throughput sequencing</subject><subject>Life Sciences & Biomedicine</subject><subject>Microbiology</subject><subject>microbiome</subject><subject>MicroRespTM</subject><subject>Science & Technology</subject><subject>soil fertility</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNUl1rFDEUHUSxpfYH-JZHQXbNd2ZehLK0ulDZhyr4Fm4yyZoyk6zJTEV_vdmdUuybgSSX5JyTm3tu07wleM1Y233wY7BmTTElaykYpupFc06k5Ksaf3_5T3zWXJZyj-vgmNb1dXPGOOG4Y-K8ydvxAHZCyaPdEB4cuoPDEOK-IIg92uU9xGDR1ehiX-dUUIroLoUBfQk2JxNgQJs0jnMMU3AL6dp7Z49IX0HR5Qq5cXkKQ_gDU0jxTfPKw1Dc5eN-0Xy7uf66-by63X3abq5uV5ZzOq0U7pW0YKwBZVtPjVKm44S2HbSi45wZwZxXnnjR9QxAMCp8z1zHLHcOMLtototun-BeH3IYIf_WCYI-HaS811DTsoPT1gOvNbGYK8kVFUBbqkivsDLcSMyq1sdF6zCb0fW2lqL-65no85sYfuh9etAtxaylXRV49yiQ08_ZlUmPoVg3DBBdmoumoiYguBKiQskCrQUuJTv_9AzB-mi9Plmvj9brxfrKaRfOL2eSLza4aN0Tr5ouJaGSyWMXkE2YTkZs0hynSn3__1T2FyXrwvw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Llimos, Miquel</creator><creator>Segarra, Guillem</creator><creator>Sancho-Adamson, Marc</creator><creator>Trillas, M. Isabel</creator><creator>Romanya, Joan</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1634-9760</orcidid></search><sort><creationdate>20210601</creationdate><title>Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization</title><author>Llimos, Miquel ; Segarra, Guillem ; Sancho-Adamson, Marc ; Trillas, M. Isabel ; Romanya, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-70d76cabcba7c8f2b77b941289a859443b53ef7f1f59d3aa5325fd3e93c4eea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>arbuscular mycorrhizal</topic><topic>compost</topic><topic>DNA high-throughput sequencing</topic><topic>Life Sciences & Biomedicine</topic><topic>Microbiology</topic><topic>microbiome</topic><topic>MicroRespTM</topic><topic>Science & Technology</topic><topic>soil fertility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llimos, Miquel</creatorcontrib><creatorcontrib>Segarra, Guillem</creatorcontrib><creatorcontrib>Sancho-Adamson, Marc</creatorcontrib><creatorcontrib>Trillas, M. Isabel</creatorcontrib><creatorcontrib>Romanya, Joan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llimos, Miquel</au><au>Segarra, Guillem</au><au>Sancho-Adamson, Marc</au><au>Trillas, M. Isabel</au><au>Romanya, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization</atitle><jtitle>Frontiers in microbiology</jtitle><stitle>FRONT MICROBIOL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>12</volume><spage>653027</spage><epage>653027</epage><pages>653027-653027</pages><artnum>653027</artnum><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroResp(TM). The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N-2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>34140935</pmid><doi>10.3389/fmicb.2021.653027</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1634-9760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-302X |
ispartof | Frontiers in microbiology, 2021-06, Vol.12, p.653027-653027, Article 653027 |
issn | 1664-302X 1664-302X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8203829 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | arbuscular mycorrhizal compost DNA high-throughput sequencing Life Sciences & Biomedicine Microbiology microbiome MicroRespTM Science & Technology soil fertility |
title | Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T06%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Olive%20Saplings%20and%20Organic%20Amendments%20on%20Soil%20Microbial%20Communities%20and%20Effects%20of%20Mineral%20Fertilization&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Llimos,%20Miquel&rft.date=2021-06-01&rft.volume=12&rft.spage=653027&rft.epage=653027&rft.pages=653027-653027&rft.artnum=653027&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2021.653027&rft_dat=%3Cproquest_pubme%3E2543454755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543454755&rft_id=info:pmid/34140935&rft_doaj_id=oai_doaj_org_article_cfa4341c04764725a28271d707b4b603&rfr_iscdi=true |