Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells

Inorganic cesium lead halide perovskites, as alternative light absorbers for organic-inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-06, Vol.26 (11), p.3398, Article 3398
Hauptverfasser: Long, Yi, Liu, Kun, Zhang, Yongli, Li, Wenzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3398
container_title Molecules (Basel, Switzerland)
container_volume 26
creator Long, Yi
Liu, Kun
Zhang, Yongli
Li, Wenzhe
description Inorganic cesium lead halide perovskites, as alternative light absorbers for organic-inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.
doi_str_mv 10.3390/molecules26113398
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_33e95134c9304b9680a50fbb147915d9</doaj_id><sourcerecordid>2548396452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-36a2665bca584b32acb42d5f0072817346cf7c0b50032f01b893754fb50c902d3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdR7If-AO8WvBHk6Ew-djc3wuli9UDBgvXWkGSzNcfs5phkK_XXm_aUYvXG3CS888zL8Gaq6gXCG0oFvJ2Ct2bxNpEGsSjdo-oQGYEVBSYe__E-qI5S2gIQZMifVge0FDi2eFh9XU_a2TnXaxfrCzvtbFR5ibZep-RStkPdx-uUlfful8ouzPUYYr2ZQ7xUszN1n871hpzE-tzGcJW-u2zrz8GrWPfW-_SsejIqn-zzu_u4-nL6_qL_uDr79GHTr89WhrWQV7RRpGm4Nop3TFOijGZk4CNASzpsKWvM2BrQHICSEVB3gracjUUwAshAj6vN3ncIait30U0qXsugnLwVyrRSxeyMt5JSKzhSZkRJRoumA8Vh1BpZK5APoni923vtFj3ZwZR0ovIPTB9WZvdNXoYr2aEQgvFi8OrOIIYfi01ZTi6ZEoeabViSJJx1VDSMk4K-_AvdhiXOJapCUSF4i8gKhXvKxJBStOP9MAjyZhPkP5tQel7ve35aHcZkyicbe98HAE0DjCPcHCx09_907_LtKvRhmTP9DbCjxvc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539957114</pqid></control><display><type>article</type><title>Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Long, Yi ; Liu, Kun ; Zhang, Yongli ; Li, Wenzhe</creator><creatorcontrib>Long, Yi ; Liu, Kun ; Zhang, Yongli ; Li, Wenzhe</creatorcontrib><description>Inorganic cesium lead halide perovskites, as alternative light absorbers for organic-inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26113398</identifier><identifier>PMID: 34205171</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Aging ; Air temperature ; ambient air temperature assisted crystallization ; Ambient temperature ; Annealing ; Biochemistry &amp; Molecular Biology ; Carrier density ; Carrier mobility ; Cesium ; Chemistry ; Chemistry, Multidisciplinary ; Crystal defects ; Crystal growth ; Crystallization ; Crystals ; CsPbI2Br ; Energy conversion efficiency ; film quality ; Glove boxes ; Humidity ; Lead compounds ; Life Sciences &amp; Biomedicine ; Metal halides ; Optoelectronics ; perovskite solar cells ; Perovskites ; photophysical properties ; Photovoltaics ; Physical Sciences ; Pinholes ; Relative humidity ; Room temperature ; Science &amp; Technology ; Solar cells ; Solvents ; Spectrum analysis ; Temperature ; Thermal stability</subject><ispartof>Molecules (Basel, Switzerland), 2021-06, Vol.26 (11), p.3398, Article 3398</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000660451000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c470t-36a2665bca584b32acb42d5f0072817346cf7c0b50032f01b893754fb50c902d3</citedby><cites>FETCH-LOGICAL-c470t-36a2665bca584b32acb42d5f0072817346cf7c0b50032f01b893754fb50c902d3</cites><orcidid>0000-0002-7231-7686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids></links><search><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Zhang, Yongli</creatorcontrib><creatorcontrib>Li, Wenzhe</creatorcontrib><title>Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><description>Inorganic cesium lead halide perovskites, as alternative light absorbers for organic-inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.</description><subject>Aging</subject><subject>Air temperature</subject><subject>ambient air temperature assisted crystallization</subject><subject>Ambient temperature</subject><subject>Annealing</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Cesium</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>CsPbI2Br</subject><subject>Energy conversion efficiency</subject><subject>film quality</subject><subject>Glove boxes</subject><subject>Humidity</subject><subject>Lead compounds</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Metal halides</subject><subject>Optoelectronics</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>photophysical properties</subject><subject>Photovoltaics</subject><subject>Physical Sciences</subject><subject>Pinholes</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Science &amp; Technology</subject><subject>Solar cells</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Thermal stability</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFTEQhhdR7If-AO8WvBHk6Ew-djc3wuli9UDBgvXWkGSzNcfs5phkK_XXm_aUYvXG3CS888zL8Gaq6gXCG0oFvJ2Ct2bxNpEGsSjdo-oQGYEVBSYe__E-qI5S2gIQZMifVge0FDi2eFh9XU_a2TnXaxfrCzvtbFR5ibZep-RStkPdx-uUlfful8ouzPUYYr2ZQ7xUszN1n871hpzE-tzGcJW-u2zrz8GrWPfW-_SsejIqn-zzu_u4-nL6_qL_uDr79GHTr89WhrWQV7RRpGm4Nop3TFOijGZk4CNASzpsKWvM2BrQHICSEVB3gracjUUwAshAj6vN3ncIait30U0qXsugnLwVyrRSxeyMt5JSKzhSZkRJRoumA8Vh1BpZK5APoni923vtFj3ZwZR0ovIPTB9WZvdNXoYr2aEQgvFi8OrOIIYfi01ZTi6ZEoeabViSJJx1VDSMk4K-_AvdhiXOJapCUSF4i8gKhXvKxJBStOP9MAjyZhPkP5tQel7ve35aHcZkyicbe98HAE0DjCPcHCx09_907_LtKvRhmTP9DbCjxvc</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Long, Yi</creator><creator>Liu, Kun</creator><creator>Zhang, Yongli</creator><creator>Li, Wenzhe</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7231-7686</orcidid></search><sort><creationdate>20210603</creationdate><title>Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells</title><author>Long, Yi ; Liu, Kun ; Zhang, Yongli ; Li, Wenzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-36a2665bca584b32acb42d5f0072817346cf7c0b50032f01b893754fb50c902d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Air temperature</topic><topic>ambient air temperature assisted crystallization</topic><topic>Ambient temperature</topic><topic>Annealing</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Cesium</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>CsPbI2Br</topic><topic>Energy conversion efficiency</topic><topic>film quality</topic><topic>Glove boxes</topic><topic>Humidity</topic><topic>Lead compounds</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Metal halides</topic><topic>Optoelectronics</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>photophysical properties</topic><topic>Photovoltaics</topic><topic>Physical Sciences</topic><topic>Pinholes</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Science &amp; Technology</topic><topic>Solar cells</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Zhang, Yongli</creatorcontrib><creatorcontrib>Li, Wenzhe</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yi</au><au>Liu, Kun</au><au>Zhang, Yongli</au><au>Li, Wenzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><date>2021-06-03</date><risdate>2021</risdate><volume>26</volume><issue>11</issue><spage>3398</spage><pages>3398-</pages><artnum>3398</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Inorganic cesium lead halide perovskites, as alternative light absorbers for organic-inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34205171</pmid><doi>10.3390/molecules26113398</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7231-7686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2021-06, Vol.26 (11), p.3398, Article 3398
issn 1420-3049
1420-3049
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199945
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aging
Air temperature
ambient air temperature assisted crystallization
Ambient temperature
Annealing
Biochemistry & Molecular Biology
Carrier density
Carrier mobility
Cesium
Chemistry
Chemistry, Multidisciplinary
Crystal defects
Crystal growth
Crystallization
Crystals
CsPbI2Br
Energy conversion efficiency
film quality
Glove boxes
Humidity
Lead compounds
Life Sciences & Biomedicine
Metal halides
Optoelectronics
perovskite solar cells
Perovskites
photophysical properties
Photovoltaics
Physical Sciences
Pinholes
Relative humidity
Room temperature
Science & Technology
Solar cells
Solvents
Spectrum analysis
Temperature
Thermal stability
title Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambient%20Air%20Temperature%20Assisted%20Crystallization%20for%20Inorganic%20CsPbI2Br%20Perovskite%20Solar%20Cells&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Long,%20Yi&rft.date=2021-06-03&rft.volume=26&rft.issue=11&rft.spage=3398&rft.pages=3398-&rft.artnum=3398&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26113398&rft_dat=%3Cproquest_pubme%3E2548396452%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539957114&rft_id=info:pmid/34205171&rft_doaj_id=oai_doaj_org_article_33e95134c9304b9680a50fbb147915d9&rfr_iscdi=true