Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction

The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning techniques that interpret how protein sequences and their homolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-06, Vol.22 (11), p.6032
Hauptverfasser: Suh, Donghyuk, Lee, Jai Woo, Choi, Sun, Lee, Yoonji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 6032
container_title International journal of molecular sciences
container_volume 22
creator Suh, Donghyuk
Lee, Jai Woo
Choi, Sun
Lee, Yoonji
description The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural organization. Especially, methods employing deep neural networks have had a significant impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as well as in drug discovery.
doi_str_mv 10.3390/ijms22116032
format Article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d72dc0657118ad9650f7e5b1ee5e4c25ebddf8eb1ff41b9848f1528359bc740e3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EoqWw4wP8AQT8SOJkg1RKeUhFIB7ryLEnravWjmynEn9PoiJUVjOae-dI9yJ0Sck15yW5MettYIzSnHB2hMY0ZSwhJBfHB_sInYWwJoRxlpWnaMRTWpa5EGNk3kGBjXjathujZDTOBuwafA_Q4gVIb41d4heIK6d7weL5zm26wZZgaTWeORulismdDKDxm3cRjMUf0Xcqdh76C2ijBv85OmnkJsDF75ygr4f55-wpWbw-Ps-mi0SxksZEC6YVyTNBaSF1mWekEZDVFCCDVLEMaq2bAmraNCmtyyItGpqxgmdlrURKgE_Q7Z7bdvUW9JDOy03VerOV_rty0lT_FWtW1dLtqqLvRAjeA672AOVdCB6av19KqqHy6rBy_gMiOnYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Suh, Donghyuk ; Lee, Jai Woo ; Choi, Sun ; Lee, Yoonji</creator><creatorcontrib>Suh, Donghyuk ; Lee, Jai Woo ; Choi, Sun ; Lee, Yoonji</creatorcontrib><description>The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural organization. Especially, methods employing deep neural networks have had a significant impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as well as in drug discovery.</description><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22116032</identifier><identifier>PMID: 34199677</identifier><language>eng</language><publisher>MDPI</publisher><subject>Review</subject><ispartof>International journal of molecular sciences, 2021-06, Vol.22 (11), p.6032</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d72dc0657118ad9650f7e5b1ee5e4c25ebddf8eb1ff41b9848f1528359bc740e3</citedby><cites>FETCH-LOGICAL-c291t-d72dc0657118ad9650f7e5b1ee5e4c25ebddf8eb1ff41b9848f1528359bc740e3</cites><orcidid>0000-0002-7478-4579 ; 0000-0002-7669-7954 ; 0000-0002-4385-2831 ; 0000-0002-2494-5792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199773/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199773/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Suh, Donghyuk</creatorcontrib><creatorcontrib>Lee, Jai Woo</creatorcontrib><creatorcontrib>Choi, Sun</creatorcontrib><creatorcontrib>Lee, Yoonji</creatorcontrib><title>Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction</title><title>International journal of molecular sciences</title><description>The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural organization. Especially, methods employing deep neural networks have had a significant impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as well as in drug discovery.</description><subject>Review</subject><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0EoqWw4wP8AQT8SOJkg1RKeUhFIB7ryLEnravWjmynEn9PoiJUVjOae-dI9yJ0Sck15yW5MettYIzSnHB2hMY0ZSwhJBfHB_sInYWwJoRxlpWnaMRTWpa5EGNk3kGBjXjathujZDTOBuwafA_Q4gVIb41d4heIK6d7weL5zm26wZZgaTWeORulismdDKDxm3cRjMUf0Xcqdh76C2ijBv85OmnkJsDF75ygr4f55-wpWbw-Ps-mi0SxksZEC6YVyTNBaSF1mWekEZDVFCCDVLEMaq2bAmraNCmtyyItGpqxgmdlrURKgE_Q7Z7bdvUW9JDOy03VerOV_rty0lT_FWtW1dLtqqLvRAjeA672AOVdCB6av19KqqHy6rBy_gMiOnYQ</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Suh, Donghyuk</creator><creator>Lee, Jai Woo</creator><creator>Choi, Sun</creator><creator>Lee, Yoonji</creator><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7478-4579</orcidid><orcidid>https://orcid.org/0000-0002-7669-7954</orcidid><orcidid>https://orcid.org/0000-0002-4385-2831</orcidid><orcidid>https://orcid.org/0000-0002-2494-5792</orcidid></search><sort><creationdate>20210602</creationdate><title>Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction</title><author>Suh, Donghyuk ; Lee, Jai Woo ; Choi, Sun ; Lee, Yoonji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d72dc0657118ad9650f7e5b1ee5e4c25ebddf8eb1ff41b9848f1528359bc740e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suh, Donghyuk</creatorcontrib><creatorcontrib>Lee, Jai Woo</creatorcontrib><creatorcontrib>Choi, Sun</creatorcontrib><creatorcontrib>Lee, Yoonji</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suh, Donghyuk</au><au>Lee, Jai Woo</au><au>Choi, Sun</au><au>Lee, Yoonji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-06-02</date><risdate>2021</risdate><volume>22</volume><issue>11</issue><spage>6032</spage><pages>6032-</pages><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural organization. Especially, methods employing deep neural networks have had a significant impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as well as in drug discovery.</abstract><pub>MDPI</pub><pmid>34199677</pmid><doi>10.3390/ijms22116032</doi><orcidid>https://orcid.org/0000-0002-7478-4579</orcidid><orcidid>https://orcid.org/0000-0002-7669-7954</orcidid><orcidid>https://orcid.org/0000-0002-4385-2831</orcidid><orcidid>https://orcid.org/0000-0002-2494-5792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-06, Vol.22 (11), p.6032
issn 1422-0067
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199773
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Review
title Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Applications%20of%20Deep%20Learning%20Methods%20on%20Evolution-%20and%20Contact-Based%20Protein%20Structure%20Prediction&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Suh,%20Donghyuk&rft.date=2021-06-02&rft.volume=22&rft.issue=11&rft.spage=6032&rft.pages=6032-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22116032&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_8199773%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34199677&rfr_iscdi=true