Analysis of EDM Performance, through a Thermal–Electrical Model with a Trunk-Conical Discharge Channel, Using a Steel Tool and an Aluminium Workpiece
In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is...
Gespeichert in:
Veröffentlicht in: | Materials 2021-06, Vol.14 (11), p.3038 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 3038 |
container_title | Materials |
container_volume | 14 |
creator | Almacinha, José A. S. Fernandes, Alice M. G. Maciel, Duarte A. Seca, Ricardo J. M. Marafona, José D. R. |
description | In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is a trunk-conical electrical conductor which dissipates heat by the Joule heating effect, being the correspondent factor equal to 1. Instead of the usual copper–iron electrode combination, steel (DIN CK45) and aluminium alloys (DIN 3.4365) are the implemented materials on both the tool and the workpiece, respectively. The numerical results were measured using the melting temperature of the materials as the boundary of material removal. The results obtained with the thermal–electrical model, namely the tool wear ratio, the tool wear rate, the material removal rate, and the surface roughness, are in good agreement with experimental results, showing that the new FE model is capable of predicting accurately with different materials for the electrodes. |
doi_str_mv | 10.3390/ma14113038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539937520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f02a49ffbb9a05a172c0ef93100ec09f5b757a25a213fc9daa54dab00ca10faf3</originalsourceid><addsrcrecordid>eNpdkc1u1DAQxyMEolXphSewxAWhBvyRNPEFabVdoFIrkNiKozVxxhu3jr21E1BvvAMH3o8nqbet-LI08mjmN3_NR1E8Z_S1EJK-GYFVjAkq2kfFPpPyuGSyqh7_5e8Vhyld0vyEYC2XT4s9UXFaSc73i58LD-4m2USCIauTc_IJowlxBK_xiExDDPNmIEDWA-ag-_X9x8qhnqLV4Mh56NGRb3a6I-Lsr8pl8HepE5v0AHGDZDmA9-iOyEWyfpPBzxPmqnUIjoDvs5GFm0fr7TySLyFebS1qfFY8MeASHj78B8XFu9V6-aE8-_j-dLk4K7VoxVQayqGSxnSdBFoDa7imaKRglKKm0tRdUzfAa-BMGC17gLrqoaNUA6MGjDgo3t7rbuduxF6jnyI4tY12hHijAlj1b8bbQW3CV9Xm_TbHdRZ4-SAQw_WMaVJjHh2dA49hTorXVStkQ2ua0Rf_oZdhjnn_O0pIKZqa76hX95SOIaWI5nczjKrdydWfk4tbjA-fWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539937520</pqid></control><display><type>article</type><title>Analysis of EDM Performance, through a Thermal–Electrical Model with a Trunk-Conical Discharge Channel, Using a Steel Tool and an Aluminium Workpiece</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Almacinha, José A. S. ; Fernandes, Alice M. G. ; Maciel, Duarte A. ; Seca, Ricardo J. M. ; Marafona, José D. R.</creator><creatorcontrib>Almacinha, José A. S. ; Fernandes, Alice M. G. ; Maciel, Duarte A. ; Seca, Ricardo J. M. ; Marafona, José D. R.</creatorcontrib><description>In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is a trunk-conical electrical conductor which dissipates heat by the Joule heating effect, being the correspondent factor equal to 1. Instead of the usual copper–iron electrode combination, steel (DIN CK45) and aluminium alloys (DIN 3.4365) are the implemented materials on both the tool and the workpiece, respectively. The numerical results were measured using the melting temperature of the materials as the boundary of material removal. The results obtained with the thermal–electrical model, namely the tool wear ratio, the tool wear rate, the material removal rate, and the surface roughness, are in good agreement with experimental results, showing that the new FE model is capable of predicting accurately with different materials for the electrodes.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14113038</identifier><identifier>PMID: 34204922</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum base alloys ; Conductors ; Discharge ; Dissipation factor ; EDM electrodes ; Electric conductors ; Electric currents ; Electrodes ; Finite element method ; Heat ; High temperature effects ; Manufacturing ; Material removal rate (machining) ; Medium carbon steels ; Melt temperature ; Ohmic dissipation ; Resistance heating ; Surface roughness ; Tool wear ; Wear rate ; Workpieces</subject><ispartof>Materials, 2021-06, Vol.14 (11), p.3038</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f02a49ffbb9a05a172c0ef93100ec09f5b757a25a213fc9daa54dab00ca10faf3</citedby><cites>FETCH-LOGICAL-c383t-f02a49ffbb9a05a172c0ef93100ec09f5b757a25a213fc9daa54dab00ca10faf3</cites><orcidid>0000-0002-7156-3594 ; 0000-0001-9173-0962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199765/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199765/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Almacinha, José A. S.</creatorcontrib><creatorcontrib>Fernandes, Alice M. G.</creatorcontrib><creatorcontrib>Maciel, Duarte A.</creatorcontrib><creatorcontrib>Seca, Ricardo J. M.</creatorcontrib><creatorcontrib>Marafona, José D. R.</creatorcontrib><title>Analysis of EDM Performance, through a Thermal–Electrical Model with a Trunk-Conical Discharge Channel, Using a Steel Tool and an Aluminium Workpiece</title><title>Materials</title><description>In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is a trunk-conical electrical conductor which dissipates heat by the Joule heating effect, being the correspondent factor equal to 1. Instead of the usual copper–iron electrode combination, steel (DIN CK45) and aluminium alloys (DIN 3.4365) are the implemented materials on both the tool and the workpiece, respectively. The numerical results were measured using the melting temperature of the materials as the boundary of material removal. The results obtained with the thermal–electrical model, namely the tool wear ratio, the tool wear rate, the material removal rate, and the surface roughness, are in good agreement with experimental results, showing that the new FE model is capable of predicting accurately with different materials for the electrodes.</description><subject>Aluminum base alloys</subject><subject>Conductors</subject><subject>Discharge</subject><subject>Dissipation factor</subject><subject>EDM electrodes</subject><subject>Electric conductors</subject><subject>Electric currents</subject><subject>Electrodes</subject><subject>Finite element method</subject><subject>Heat</subject><subject>High temperature effects</subject><subject>Manufacturing</subject><subject>Material removal rate (machining)</subject><subject>Medium carbon steels</subject><subject>Melt temperature</subject><subject>Ohmic dissipation</subject><subject>Resistance heating</subject><subject>Surface roughness</subject><subject>Tool wear</subject><subject>Wear rate</subject><subject>Workpieces</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1u1DAQxyMEolXphSewxAWhBvyRNPEFabVdoFIrkNiKozVxxhu3jr21E1BvvAMH3o8nqbet-LI08mjmN3_NR1E8Z_S1EJK-GYFVjAkq2kfFPpPyuGSyqh7_5e8Vhyld0vyEYC2XT4s9UXFaSc73i58LD-4m2USCIauTc_IJowlxBK_xiExDDPNmIEDWA-ag-_X9x8qhnqLV4Mh56NGRb3a6I-Lsr8pl8HepE5v0AHGDZDmA9-iOyEWyfpPBzxPmqnUIjoDvs5GFm0fr7TySLyFebS1qfFY8MeASHj78B8XFu9V6-aE8-_j-dLk4K7VoxVQayqGSxnSdBFoDa7imaKRglKKm0tRdUzfAa-BMGC17gLrqoaNUA6MGjDgo3t7rbuduxF6jnyI4tY12hHijAlj1b8bbQW3CV9Xm_TbHdRZ4-SAQw_WMaVJjHh2dA49hTorXVStkQ2ua0Rf_oZdhjnn_O0pIKZqa76hX95SOIaWI5nczjKrdydWfk4tbjA-fWw</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Almacinha, José A. S.</creator><creator>Fernandes, Alice M. G.</creator><creator>Maciel, Duarte A.</creator><creator>Seca, Ricardo J. M.</creator><creator>Marafona, José D. R.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7156-3594</orcidid><orcidid>https://orcid.org/0000-0001-9173-0962</orcidid></search><sort><creationdate>20210603</creationdate><title>Analysis of EDM Performance, through a Thermal–Electrical Model with a Trunk-Conical Discharge Channel, Using a Steel Tool and an Aluminium Workpiece</title><author>Almacinha, José A. S. ; Fernandes, Alice M. G. ; Maciel, Duarte A. ; Seca, Ricardo J. M. ; Marafona, José D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f02a49ffbb9a05a172c0ef93100ec09f5b757a25a213fc9daa54dab00ca10faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum base alloys</topic><topic>Conductors</topic><topic>Discharge</topic><topic>Dissipation factor</topic><topic>EDM electrodes</topic><topic>Electric conductors</topic><topic>Electric currents</topic><topic>Electrodes</topic><topic>Finite element method</topic><topic>Heat</topic><topic>High temperature effects</topic><topic>Manufacturing</topic><topic>Material removal rate (machining)</topic><topic>Medium carbon steels</topic><topic>Melt temperature</topic><topic>Ohmic dissipation</topic><topic>Resistance heating</topic><topic>Surface roughness</topic><topic>Tool wear</topic><topic>Wear rate</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almacinha, José A. S.</creatorcontrib><creatorcontrib>Fernandes, Alice M. G.</creatorcontrib><creatorcontrib>Maciel, Duarte A.</creatorcontrib><creatorcontrib>Seca, Ricardo J. M.</creatorcontrib><creatorcontrib>Marafona, José D. R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almacinha, José A. S.</au><au>Fernandes, Alice M. G.</au><au>Maciel, Duarte A.</au><au>Seca, Ricardo J. M.</au><au>Marafona, José D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of EDM Performance, through a Thermal–Electrical Model with a Trunk-Conical Discharge Channel, Using a Steel Tool and an Aluminium Workpiece</atitle><jtitle>Materials</jtitle><date>2021-06-03</date><risdate>2021</risdate><volume>14</volume><issue>11</issue><spage>3038</spage><pages>3038-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is a trunk-conical electrical conductor which dissipates heat by the Joule heating effect, being the correspondent factor equal to 1. Instead of the usual copper–iron electrode combination, steel (DIN CK45) and aluminium alloys (DIN 3.4365) are the implemented materials on both the tool and the workpiece, respectively. The numerical results were measured using the melting temperature of the materials as the boundary of material removal. The results obtained with the thermal–electrical model, namely the tool wear ratio, the tool wear rate, the material removal rate, and the surface roughness, are in good agreement with experimental results, showing that the new FE model is capable of predicting accurately with different materials for the electrodes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34204922</pmid><doi>10.3390/ma14113038</doi><orcidid>https://orcid.org/0000-0002-7156-3594</orcidid><orcidid>https://orcid.org/0000-0001-9173-0962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-06, Vol.14 (11), p.3038 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199765 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aluminum base alloys Conductors Discharge Dissipation factor EDM electrodes Electric conductors Electric currents Electrodes Finite element method Heat High temperature effects Manufacturing Material removal rate (machining) Medium carbon steels Melt temperature Ohmic dissipation Resistance heating Surface roughness Tool wear Wear rate Workpieces |
title | Analysis of EDM Performance, through a Thermal–Electrical Model with a Trunk-Conical Discharge Channel, Using a Steel Tool and an Aluminium Workpiece |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20EDM%20Performance,%20through%20a%20Thermal%E2%80%93Electrical%20Model%20with%20a%20Trunk-Conical%20Discharge%20Channel,%20Using%20a%20Steel%20Tool%20and%20an%20Aluminium%20Workpiece&rft.jtitle=Materials&rft.au=Almacinha,%20Jos%C3%A9%20A.%20S.&rft.date=2021-06-03&rft.volume=14&rft.issue=11&rft.spage=3038&rft.pages=3038-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14113038&rft_dat=%3Cproquest_pubme%3E2539937520%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539937520&rft_id=info:pmid/34204922&rfr_iscdi=true |