Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy

This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-06, Vol.14 (11), p.3031
Hauptverfasser: Švec, Martin, Vodičková, Věra, Hanus, Pavel, Pazourková Prokopčáková, Petra, Čamek, Libor, Moravec, Jaromír
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3031
container_title Materials
container_volume 14
creator Švec, Martin
Vodičková, Věra
Hanus, Pavel
Pazourková Prokopčáková, Petra
Čamek, Libor
Moravec, Jaromír
description This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.
doi_str_mv 10.3390/ma14113031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548402733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</originalsourceid><addsrcrecordid>eNpdkU9v3CAQxVHVqonSXPoJkHqpKrkBD7bhUmm72nQjpepht2eE8ThLhM0W45Vy7hcvTqL-4wBo3k8P3gwhbzn7CKDY1WC44BwY8BfknCtVF1wJ8fKv-xm5nKZ7lhcAl6V6Tc5ALCoT5-Tnpu_RJhp6unV3B4x057yzYaTrMCYcEzVjR7doEt3HvA9LKau7FGeb5oh0cwp-Ti7XHslsUuxxOGI0j_JnPJiTC3NcnrjGopQrX_Bq54rya6Ar78PDG_KqN37Cy-fzgny_3uzX2-L225eb9eq2sCAhFR0ylL2tW8ghWmFFy6TtUXSNaqoau6pvaglMVkwx5Nx2IJlhdcNVV7amquGCfHryPc7tgJ3NUaLx-hjdYOKDDsbpf5XRHfRdOGm5dEvwbPD-2SCGHzNOSQ9usui9GTHMky4rIQUrG4CMvvsPvc89GHO8TIFS0EjZZOrDE2VjmKaI_e_PcKaX8eo_44VfQ-SVeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539937887</pqid></control><display><type>article</type><title>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Švec, Martin ; Vodičková, Věra ; Hanus, Pavel ; Pazourková Prokopčáková, Petra ; Čamek, Libor ; Moravec, Jaromír</creator><creatorcontrib>Švec, Martin ; Vodičková, Věra ; Hanus, Pavel ; Pazourková Prokopčáková, Petra ; Čamek, Libor ; Moravec, Jaromír</creatorcontrib><description>This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14113031</identifier><identifier>PMID: 34199604</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Alloying elements ; Annealing ; Brittleness ; Cooling ; Corrosion resistance ; Ductility ; Ferrous alloys ; Heat treatment ; High temperature ; Investigations ; Iron aluminides ; Machinability ; Mechanical properties ; Oxidation ; Phase stability ; Plasma sintering ; Powder metallurgy ; Silicon ; Solid solutions ; Stainless steel ; Steel alloys ; Temperature ; Thermal expansion ; Workability ; Yield strength ; Yield stress</subject><ispartof>Materials, 2021-06, Vol.14 (11), p.3031</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</citedby><cites>FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</cites><orcidid>0000-0002-9434-6349 ; 0000-0003-1533-1016 ; 0000-0003-4731-5969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Švec, Martin</creatorcontrib><creatorcontrib>Vodičková, Věra</creatorcontrib><creatorcontrib>Hanus, Pavel</creatorcontrib><creatorcontrib>Pazourková Prokopčáková, Petra</creatorcontrib><creatorcontrib>Čamek, Libor</creatorcontrib><creatorcontrib>Moravec, Jaromír</creatorcontrib><title>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</title><title>Materials</title><description>This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.</description><subject>Additives</subject><subject>Alloying elements</subject><subject>Annealing</subject><subject>Brittleness</subject><subject>Cooling</subject><subject>Corrosion resistance</subject><subject>Ductility</subject><subject>Ferrous alloys</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Iron aluminides</subject><subject>Machinability</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Phase stability</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Silicon</subject><subject>Solid solutions</subject><subject>Stainless steel</subject><subject>Steel alloys</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Workability</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU9v3CAQxVHVqonSXPoJkHqpKrkBD7bhUmm72nQjpepht2eE8ThLhM0W45Vy7hcvTqL-4wBo3k8P3gwhbzn7CKDY1WC44BwY8BfknCtVF1wJ8fKv-xm5nKZ7lhcAl6V6Tc5ALCoT5-Tnpu_RJhp6unV3B4x057yzYaTrMCYcEzVjR7doEt3HvA9LKau7FGeb5oh0cwp-Ti7XHslsUuxxOGI0j_JnPJiTC3NcnrjGopQrX_Bq54rya6Ar78PDG_KqN37Cy-fzgny_3uzX2-L225eb9eq2sCAhFR0ylL2tW8ghWmFFy6TtUXSNaqoau6pvaglMVkwx5Nx2IJlhdcNVV7amquGCfHryPc7tgJ3NUaLx-hjdYOKDDsbpf5XRHfRdOGm5dEvwbPD-2SCGHzNOSQ9usui9GTHMky4rIQUrG4CMvvsPvc89GHO8TIFS0EjZZOrDE2VjmKaI_e_PcKaX8eo_44VfQ-SVeg</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Švec, Martin</creator><creator>Vodičková, Věra</creator><creator>Hanus, Pavel</creator><creator>Pazourková Prokopčáková, Petra</creator><creator>Čamek, Libor</creator><creator>Moravec, Jaromír</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9434-6349</orcidid><orcidid>https://orcid.org/0000-0003-1533-1016</orcidid><orcidid>https://orcid.org/0000-0003-4731-5969</orcidid></search><sort><creationdate>20210602</creationdate><title>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</title><author>Švec, Martin ; Vodičková, Věra ; Hanus, Pavel ; Pazourková Prokopčáková, Petra ; Čamek, Libor ; Moravec, Jaromír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Alloying elements</topic><topic>Annealing</topic><topic>Brittleness</topic><topic>Cooling</topic><topic>Corrosion resistance</topic><topic>Ductility</topic><topic>Ferrous alloys</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Iron aluminides</topic><topic>Machinability</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Phase stability</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Silicon</topic><topic>Solid solutions</topic><topic>Stainless steel</topic><topic>Steel alloys</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Workability</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Švec, Martin</creatorcontrib><creatorcontrib>Vodičková, Věra</creatorcontrib><creatorcontrib>Hanus, Pavel</creatorcontrib><creatorcontrib>Pazourková Prokopčáková, Petra</creatorcontrib><creatorcontrib>Čamek, Libor</creatorcontrib><creatorcontrib>Moravec, Jaromír</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Švec, Martin</au><au>Vodičková, Věra</au><au>Hanus, Pavel</au><au>Pazourková Prokopčáková, Petra</au><au>Čamek, Libor</au><au>Moravec, Jaromír</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</atitle><jtitle>Materials</jtitle><date>2021-06-02</date><risdate>2021</risdate><volume>14</volume><issue>11</issue><spage>3031</spage><pages>3031-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34199604</pmid><doi>10.3390/ma14113031</doi><orcidid>https://orcid.org/0000-0002-9434-6349</orcidid><orcidid>https://orcid.org/0000-0003-1533-1016</orcidid><orcidid>https://orcid.org/0000-0003-4731-5969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-06, Vol.14 (11), p.3031
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199641
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Additives
Alloying elements
Annealing
Brittleness
Cooling
Corrosion resistance
Ductility
Ferrous alloys
Heat treatment
High temperature
Investigations
Iron aluminides
Machinability
Mechanical properties
Oxidation
Phase stability
Plasma sintering
Powder metallurgy
Silicon
Solid solutions
Stainless steel
Steel alloys
Temperature
Thermal expansion
Workability
Yield strength
Yield stress
title Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Higher%20Silicon%20Content%20and%20Heat%20Treatment%20on%20Structure%20Evolution%20and%20High-Temperature%20Behaviour%20of%20Fe-28Al-15Si-2Mo%20Alloy&rft.jtitle=Materials&rft.au=%C5%A0vec,%20Martin&rft.date=2021-06-02&rft.volume=14&rft.issue=11&rft.spage=3031&rft.pages=3031-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14113031&rft_dat=%3Cproquest_pubme%3E2548402733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539937887&rft_id=info:pmid/34199604&rfr_iscdi=true