Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy
This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates thei...
Gespeichert in:
Veröffentlicht in: | Materials 2021-06, Vol.14 (11), p.3031 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 3031 |
container_title | Materials |
container_volume | 14 |
creator | Švec, Martin Vodičková, Věra Hanus, Pavel Pazourková Prokopčáková, Petra Čamek, Libor Moravec, Jaromír |
description | This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon. |
doi_str_mv | 10.3390/ma14113031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548402733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</originalsourceid><addsrcrecordid>eNpdkU9v3CAQxVHVqonSXPoJkHqpKrkBD7bhUmm72nQjpepht2eE8ThLhM0W45Vy7hcvTqL-4wBo3k8P3gwhbzn7CKDY1WC44BwY8BfknCtVF1wJ8fKv-xm5nKZ7lhcAl6V6Tc5ALCoT5-Tnpu_RJhp6unV3B4x057yzYaTrMCYcEzVjR7doEt3HvA9LKau7FGeb5oh0cwp-Ti7XHslsUuxxOGI0j_JnPJiTC3NcnrjGopQrX_Bq54rya6Ar78PDG_KqN37Cy-fzgny_3uzX2-L225eb9eq2sCAhFR0ylL2tW8ghWmFFy6TtUXSNaqoau6pvaglMVkwx5Nx2IJlhdcNVV7amquGCfHryPc7tgJ3NUaLx-hjdYOKDDsbpf5XRHfRdOGm5dEvwbPD-2SCGHzNOSQ9usui9GTHMky4rIQUrG4CMvvsPvc89GHO8TIFS0EjZZOrDE2VjmKaI_e_PcKaX8eo_44VfQ-SVeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539937887</pqid></control><display><type>article</type><title>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Švec, Martin ; Vodičková, Věra ; Hanus, Pavel ; Pazourková Prokopčáková, Petra ; Čamek, Libor ; Moravec, Jaromír</creator><creatorcontrib>Švec, Martin ; Vodičková, Věra ; Hanus, Pavel ; Pazourková Prokopčáková, Petra ; Čamek, Libor ; Moravec, Jaromír</creatorcontrib><description>This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14113031</identifier><identifier>PMID: 34199604</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Alloying elements ; Annealing ; Brittleness ; Cooling ; Corrosion resistance ; Ductility ; Ferrous alloys ; Heat treatment ; High temperature ; Investigations ; Iron aluminides ; Machinability ; Mechanical properties ; Oxidation ; Phase stability ; Plasma sintering ; Powder metallurgy ; Silicon ; Solid solutions ; Stainless steel ; Steel alloys ; Temperature ; Thermal expansion ; Workability ; Yield strength ; Yield stress</subject><ispartof>Materials, 2021-06, Vol.14 (11), p.3031</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</citedby><cites>FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</cites><orcidid>0000-0002-9434-6349 ; 0000-0003-1533-1016 ; 0000-0003-4731-5969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Švec, Martin</creatorcontrib><creatorcontrib>Vodičková, Věra</creatorcontrib><creatorcontrib>Hanus, Pavel</creatorcontrib><creatorcontrib>Pazourková Prokopčáková, Petra</creatorcontrib><creatorcontrib>Čamek, Libor</creatorcontrib><creatorcontrib>Moravec, Jaromír</creatorcontrib><title>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</title><title>Materials</title><description>This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.</description><subject>Additives</subject><subject>Alloying elements</subject><subject>Annealing</subject><subject>Brittleness</subject><subject>Cooling</subject><subject>Corrosion resistance</subject><subject>Ductility</subject><subject>Ferrous alloys</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Iron aluminides</subject><subject>Machinability</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Phase stability</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Silicon</subject><subject>Solid solutions</subject><subject>Stainless steel</subject><subject>Steel alloys</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Workability</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU9v3CAQxVHVqonSXPoJkHqpKrkBD7bhUmm72nQjpepht2eE8ThLhM0W45Vy7hcvTqL-4wBo3k8P3gwhbzn7CKDY1WC44BwY8BfknCtVF1wJ8fKv-xm5nKZ7lhcAl6V6Tc5ALCoT5-Tnpu_RJhp6unV3B4x057yzYaTrMCYcEzVjR7doEt3HvA9LKau7FGeb5oh0cwp-Ti7XHslsUuxxOGI0j_JnPJiTC3NcnrjGopQrX_Bq54rya6Ar78PDG_KqN37Cy-fzgny_3uzX2-L225eb9eq2sCAhFR0ylL2tW8ghWmFFy6TtUXSNaqoau6pvaglMVkwx5Nx2IJlhdcNVV7amquGCfHryPc7tgJ3NUaLx-hjdYOKDDsbpf5XRHfRdOGm5dEvwbPD-2SCGHzNOSQ9usui9GTHMky4rIQUrG4CMvvsPvc89GHO8TIFS0EjZZOrDE2VjmKaI_e_PcKaX8eo_44VfQ-SVeg</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Švec, Martin</creator><creator>Vodičková, Věra</creator><creator>Hanus, Pavel</creator><creator>Pazourková Prokopčáková, Petra</creator><creator>Čamek, Libor</creator><creator>Moravec, Jaromír</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9434-6349</orcidid><orcidid>https://orcid.org/0000-0003-1533-1016</orcidid><orcidid>https://orcid.org/0000-0003-4731-5969</orcidid></search><sort><creationdate>20210602</creationdate><title>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</title><author>Švec, Martin ; Vodičková, Věra ; Hanus, Pavel ; Pazourková Prokopčáková, Petra ; Čamek, Libor ; Moravec, Jaromír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-de0e8fc6b3829b4c4b08cfe4d79756ed5f7683085090e11cd380a06719d2ba563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Alloying elements</topic><topic>Annealing</topic><topic>Brittleness</topic><topic>Cooling</topic><topic>Corrosion resistance</topic><topic>Ductility</topic><topic>Ferrous alloys</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Iron aluminides</topic><topic>Machinability</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Phase stability</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Silicon</topic><topic>Solid solutions</topic><topic>Stainless steel</topic><topic>Steel alloys</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Workability</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Švec, Martin</creatorcontrib><creatorcontrib>Vodičková, Věra</creatorcontrib><creatorcontrib>Hanus, Pavel</creatorcontrib><creatorcontrib>Pazourková Prokopčáková, Petra</creatorcontrib><creatorcontrib>Čamek, Libor</creatorcontrib><creatorcontrib>Moravec, Jaromír</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Švec, Martin</au><au>Vodičková, Věra</au><au>Hanus, Pavel</au><au>Pazourková Prokopčáková, Petra</au><au>Čamek, Libor</au><au>Moravec, Jaromír</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy</atitle><jtitle>Materials</jtitle><date>2021-06-02</date><risdate>2021</risdate><volume>14</volume><issue>11</issue><spage>3031</spage><pages>3031-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34199604</pmid><doi>10.3390/ma14113031</doi><orcidid>https://orcid.org/0000-0002-9434-6349</orcidid><orcidid>https://orcid.org/0000-0003-1533-1016</orcidid><orcidid>https://orcid.org/0000-0003-4731-5969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-06, Vol.14 (11), p.3031 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199641 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Additives Alloying elements Annealing Brittleness Cooling Corrosion resistance Ductility Ferrous alloys Heat treatment High temperature Investigations Iron aluminides Machinability Mechanical properties Oxidation Phase stability Plasma sintering Powder metallurgy Silicon Solid solutions Stainless steel Steel alloys Temperature Thermal expansion Workability Yield strength Yield stress |
title | Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Higher%20Silicon%20Content%20and%20Heat%20Treatment%20on%20Structure%20Evolution%20and%20High-Temperature%20Behaviour%20of%20Fe-28Al-15Si-2Mo%20Alloy&rft.jtitle=Materials&rft.au=%C5%A0vec,%20Martin&rft.date=2021-06-02&rft.volume=14&rft.issue=11&rft.spage=3031&rft.pages=3031-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14113031&rft_dat=%3Cproquest_pubme%3E2548402733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539937887&rft_id=info:pmid/34199604&rfr_iscdi=true |