An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers
Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-05, Vol.13 (11), p.1819 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1819 |
container_title | Polymers |
container_volume | 13 |
creator | Dragomir, Toma-Leonida Pană, Ana-Maria Ordodi, Valentin Gherman, Vasile Dumitrel, Gabriela-Alina Nanu, Sorin |
description | Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment. |
doi_str_mv | 10.3390/polym13111819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536473100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</originalsourceid><addsrcrecordid>eNpdUbFOwzAQtRCIVqUjeyQWloDtc5xkQSpVKaAiGGC2HMcprpw42AlS_56UVgi45U73np7eu0PonOArgBxft85uawKEkIzkR2hMcQoxA46Pf80jNA1hg4diCeckPUUjYDilGc_G6HHWRIu6Nd4oaaMnV2obVc5HL16XRnWmWUe3ZtiuvSxlZ1wzIK4yVofIVdHSbpX7NqF9OEMnlbRBTw99gt7uFq_z-3j1vHyYz1axgpx2MVEs5xwySRTFrMSlVKCzghUpTXCRMiI1zSjFQBWhNOGVygBrgLJKJBDGYIJu9rptX9S6VLrpvLSi9aaWfiucNOIv0ph3sXafYrhRTiAdBC4PAt599Dp0ojZBaWtlo10fBE2AsxQIxgP14h9143rfDPF2rDxP8mzIMkHxnqW8C8Hr6scMwWL3KPHnUfAFb_SEpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539959866</pqid></control><display><type>article</type><title>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</title><source>PubMed (Medline)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Dragomir, Toma-Leonida ; Pană, Ana-Maria ; Ordodi, Valentin ; Gherman, Vasile ; Dumitrel, Gabriela-Alina ; Nanu, Sorin</creator><creatorcontrib>Dragomir, Toma-Leonida ; Pană, Ana-Maria ; Ordodi, Valentin ; Gherman, Vasile ; Dumitrel, Gabriela-Alina ; Nanu, Sorin</creatorcontrib><description>Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13111819</identifier><identifier>PMID: 34072868</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biodegradation ; Correlation coefficients ; Equations of state ; Exponential functions ; Glycopolymers ; Growth models ; Kinetics ; Mathematical models ; Mean square errors ; Polymers ; Time lag ; Weight loss</subject><ispartof>Polymers, 2021-05, Vol.13 (11), p.1819</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</citedby><cites>FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</cites><orcidid>0000-0001-5701-9042 ; 0000-0001-5424-7883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199137/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199137/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Dragomir, Toma-Leonida</creatorcontrib><creatorcontrib>Pană, Ana-Maria</creatorcontrib><creatorcontrib>Ordodi, Valentin</creatorcontrib><creatorcontrib>Gherman, Vasile</creatorcontrib><creatorcontrib>Dumitrel, Gabriela-Alina</creatorcontrib><creatorcontrib>Nanu, Sorin</creatorcontrib><title>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</title><title>Polymers</title><description>Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.</description><subject>Biodegradation</subject><subject>Correlation coefficients</subject><subject>Equations of state</subject><subject>Exponential functions</subject><subject>Glycopolymers</subject><subject>Growth models</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Polymers</subject><subject>Time lag</subject><subject>Weight loss</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUbFOwzAQtRCIVqUjeyQWloDtc5xkQSpVKaAiGGC2HMcprpw42AlS_56UVgi45U73np7eu0PonOArgBxft85uawKEkIzkR2hMcQoxA46Pf80jNA1hg4diCeckPUUjYDilGc_G6HHWRIu6Nd4oaaMnV2obVc5HL16XRnWmWUe3ZtiuvSxlZ1wzIK4yVofIVdHSbpX7NqF9OEMnlbRBTw99gt7uFq_z-3j1vHyYz1axgpx2MVEs5xwySRTFrMSlVKCzghUpTXCRMiI1zSjFQBWhNOGVygBrgLJKJBDGYIJu9rptX9S6VLrpvLSi9aaWfiucNOIv0ph3sXafYrhRTiAdBC4PAt599Dp0ojZBaWtlo10fBE2AsxQIxgP14h9143rfDPF2rDxP8mzIMkHxnqW8C8Hr6scMwWL3KPHnUfAFb_SEpg</recordid><startdate>20210531</startdate><enddate>20210531</enddate><creator>Dragomir, Toma-Leonida</creator><creator>Pană, Ana-Maria</creator><creator>Ordodi, Valentin</creator><creator>Gherman, Vasile</creator><creator>Dumitrel, Gabriela-Alina</creator><creator>Nanu, Sorin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5701-9042</orcidid><orcidid>https://orcid.org/0000-0001-5424-7883</orcidid></search><sort><creationdate>20210531</creationdate><title>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</title><author>Dragomir, Toma-Leonida ; Pană, Ana-Maria ; Ordodi, Valentin ; Gherman, Vasile ; Dumitrel, Gabriela-Alina ; Nanu, Sorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradation</topic><topic>Correlation coefficients</topic><topic>Equations of state</topic><topic>Exponential functions</topic><topic>Glycopolymers</topic><topic>Growth models</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Polymers</topic><topic>Time lag</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dragomir, Toma-Leonida</creatorcontrib><creatorcontrib>Pană, Ana-Maria</creatorcontrib><creatorcontrib>Ordodi, Valentin</creatorcontrib><creatorcontrib>Gherman, Vasile</creatorcontrib><creatorcontrib>Dumitrel, Gabriela-Alina</creatorcontrib><creatorcontrib>Nanu, Sorin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dragomir, Toma-Leonida</au><au>Pană, Ana-Maria</au><au>Ordodi, Valentin</au><au>Gherman, Vasile</au><au>Dumitrel, Gabriela-Alina</au><au>Nanu, Sorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</atitle><jtitle>Polymers</jtitle><date>2021-05-31</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>1819</spage><pages>1819-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34072868</pmid><doi>10.3390/polym13111819</doi><orcidid>https://orcid.org/0000-0001-5701-9042</orcidid><orcidid>https://orcid.org/0000-0001-5424-7883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2021-05, Vol.13 (11), p.1819 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199137 |
source | PubMed (Medline); MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Biodegradation Correlation coefficients Equations of state Exponential functions Glycopolymers Growth models Kinetics Mathematical models Mean square errors Polymers Time lag Weight loss |
title | An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Model%20for%20Predicting%20Biodegradation%20Profiles%20of%20Glycopolymers&rft.jtitle=Polymers&rft.au=Dragomir,%20Toma-Leonida&rft.date=2021-05-31&rft.volume=13&rft.issue=11&rft.spage=1819&rft.pages=1819-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13111819&rft_dat=%3Cproquest_pubme%3E2536473100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539959866&rft_id=info:pmid/34072868&rfr_iscdi=true |