An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers

Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-05, Vol.13 (11), p.1819
Hauptverfasser: Dragomir, Toma-Leonida, Pană, Ana-Maria, Ordodi, Valentin, Gherman, Vasile, Dumitrel, Gabriela-Alina, Nanu, Sorin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1819
container_title Polymers
container_volume 13
creator Dragomir, Toma-Leonida
Pană, Ana-Maria
Ordodi, Valentin
Gherman, Vasile
Dumitrel, Gabriela-Alina
Nanu, Sorin
description Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.
doi_str_mv 10.3390/polym13111819
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536473100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</originalsourceid><addsrcrecordid>eNpdUbFOwzAQtRCIVqUjeyQWloDtc5xkQSpVKaAiGGC2HMcprpw42AlS_56UVgi45U73np7eu0PonOArgBxft85uawKEkIzkR2hMcQoxA46Pf80jNA1hg4diCeckPUUjYDilGc_G6HHWRIu6Nd4oaaMnV2obVc5HL16XRnWmWUe3ZtiuvSxlZ1wzIK4yVofIVdHSbpX7NqF9OEMnlbRBTw99gt7uFq_z-3j1vHyYz1axgpx2MVEs5xwySRTFrMSlVKCzghUpTXCRMiI1zSjFQBWhNOGVygBrgLJKJBDGYIJu9rptX9S6VLrpvLSi9aaWfiucNOIv0ph3sXafYrhRTiAdBC4PAt599Dp0ojZBaWtlo10fBE2AsxQIxgP14h9143rfDPF2rDxP8mzIMkHxnqW8C8Hr6scMwWL3KPHnUfAFb_SEpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539959866</pqid></control><display><type>article</type><title>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</title><source>PubMed (Medline)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Dragomir, Toma-Leonida ; Pană, Ana-Maria ; Ordodi, Valentin ; Gherman, Vasile ; Dumitrel, Gabriela-Alina ; Nanu, Sorin</creator><creatorcontrib>Dragomir, Toma-Leonida ; Pană, Ana-Maria ; Ordodi, Valentin ; Gherman, Vasile ; Dumitrel, Gabriela-Alina ; Nanu, Sorin</creatorcontrib><description>Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13111819</identifier><identifier>PMID: 34072868</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biodegradation ; Correlation coefficients ; Equations of state ; Exponential functions ; Glycopolymers ; Growth models ; Kinetics ; Mathematical models ; Mean square errors ; Polymers ; Time lag ; Weight loss</subject><ispartof>Polymers, 2021-05, Vol.13 (11), p.1819</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</citedby><cites>FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</cites><orcidid>0000-0001-5701-9042 ; 0000-0001-5424-7883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199137/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199137/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Dragomir, Toma-Leonida</creatorcontrib><creatorcontrib>Pană, Ana-Maria</creatorcontrib><creatorcontrib>Ordodi, Valentin</creatorcontrib><creatorcontrib>Gherman, Vasile</creatorcontrib><creatorcontrib>Dumitrel, Gabriela-Alina</creatorcontrib><creatorcontrib>Nanu, Sorin</creatorcontrib><title>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</title><title>Polymers</title><description>Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.</description><subject>Biodegradation</subject><subject>Correlation coefficients</subject><subject>Equations of state</subject><subject>Exponential functions</subject><subject>Glycopolymers</subject><subject>Growth models</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Polymers</subject><subject>Time lag</subject><subject>Weight loss</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUbFOwzAQtRCIVqUjeyQWloDtc5xkQSpVKaAiGGC2HMcprpw42AlS_56UVgi45U73np7eu0PonOArgBxft85uawKEkIzkR2hMcQoxA46Pf80jNA1hg4diCeckPUUjYDilGc_G6HHWRIu6Nd4oaaMnV2obVc5HL16XRnWmWUe3ZtiuvSxlZ1wzIK4yVofIVdHSbpX7NqF9OEMnlbRBTw99gt7uFq_z-3j1vHyYz1axgpx2MVEs5xwySRTFrMSlVKCzghUpTXCRMiI1zSjFQBWhNOGVygBrgLJKJBDGYIJu9rptX9S6VLrpvLSi9aaWfiucNOIv0ph3sXafYrhRTiAdBC4PAt599Dp0ojZBaWtlo10fBE2AsxQIxgP14h9143rfDPF2rDxP8mzIMkHxnqW8C8Hr6scMwWL3KPHnUfAFb_SEpg</recordid><startdate>20210531</startdate><enddate>20210531</enddate><creator>Dragomir, Toma-Leonida</creator><creator>Pană, Ana-Maria</creator><creator>Ordodi, Valentin</creator><creator>Gherman, Vasile</creator><creator>Dumitrel, Gabriela-Alina</creator><creator>Nanu, Sorin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5701-9042</orcidid><orcidid>https://orcid.org/0000-0001-5424-7883</orcidid></search><sort><creationdate>20210531</creationdate><title>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</title><author>Dragomir, Toma-Leonida ; Pană, Ana-Maria ; Ordodi, Valentin ; Gherman, Vasile ; Dumitrel, Gabriela-Alina ; Nanu, Sorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1c496638a1c204d0dac3e8b4b7250b741ae2822032c12256fc830e33df5a31443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradation</topic><topic>Correlation coefficients</topic><topic>Equations of state</topic><topic>Exponential functions</topic><topic>Glycopolymers</topic><topic>Growth models</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Polymers</topic><topic>Time lag</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dragomir, Toma-Leonida</creatorcontrib><creatorcontrib>Pană, Ana-Maria</creatorcontrib><creatorcontrib>Ordodi, Valentin</creatorcontrib><creatorcontrib>Gherman, Vasile</creatorcontrib><creatorcontrib>Dumitrel, Gabriela-Alina</creatorcontrib><creatorcontrib>Nanu, Sorin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dragomir, Toma-Leonida</au><au>Pană, Ana-Maria</au><au>Ordodi, Valentin</au><au>Gherman, Vasile</au><au>Dumitrel, Gabriela-Alina</au><au>Nanu, Sorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers</atitle><jtitle>Polymers</jtitle><date>2021-05-31</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>1819</spage><pages>1819-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Pollution caused by plastic materials has a great impact on the environment. The biodegradation process is a good treatment solution for common polymers and biodegradation susceptible ones. The present work introduces new insight into the biodegradation process from a mathematical point of view, as it envisions a new empirical model for this complex process. The model is an exponential function with two different time constants and a time delay, which follows the weight loss profile of the polymer during the biodegradation process. Moreover, this function can be generated as the output variable of a dynamic exogenous system described through state equations. The newly developed models displayed a good fit against the experimental data, as shown by statistical indicators. In addition, the new empirical model was compared to kinetics models available in the literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed cases. The mathematical operations were performed in the MATLAB Simulink environment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34072868</pmid><doi>10.3390/polym13111819</doi><orcidid>https://orcid.org/0000-0001-5701-9042</orcidid><orcidid>https://orcid.org/0000-0001-5424-7883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-05, Vol.13 (11), p.1819
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8199137
source PubMed (Medline); MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library; PubMed Central Open Access
subjects Biodegradation
Correlation coefficients
Equations of state
Exponential functions
Glycopolymers
Growth models
Kinetics
Mathematical models
Mean square errors
Polymers
Time lag
Weight loss
title An Empirical Model for Predicting Biodegradation Profiles of Glycopolymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Model%20for%20Predicting%20Biodegradation%20Profiles%20of%20Glycopolymers&rft.jtitle=Polymers&rft.au=Dragomir,%20Toma-Leonida&rft.date=2021-05-31&rft.volume=13&rft.issue=11&rft.spage=1819&rft.pages=1819-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13111819&rft_dat=%3Cproquest_pubme%3E2536473100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539959866&rft_id=info:pmid/34072868&rfr_iscdi=true