Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal transduction and targeted therapy 2021-06, Vol.6 (1), p.233-19, Article 233
Hauptverfasser: Zhang, Qianqian, Xiang, Rong, Huo, Shanshan, Zhou, Yunjiao, Jiang, Shibo, Wang, Qiao, Yu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 233
container_title Signal transduction and targeted therapy
container_volume 6
creator Zhang, Qianqian
Xiang, Rong
Huo, Shanshan
Zhou, Yunjiao
Jiang, Shibo
Wang, Qiao
Yu, Fei
description The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody–FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host–pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.
doi_str_mv 10.1038/s41392-021-00653-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8193598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c61cc825cca54428ab0afded3fe3f5e4</doaj_id><sourcerecordid>2540000869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d20d419496e45a18ec577403e730deec8a80253da0736d3de20efe390a538bc43</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEolXpC7BAkdggoYD_Y2-QqqhApSIkCmwtx76ZyShjD3bSUd8eZ1IGygLhjR37Oyf32qconmP0BiMq3yaGqSIVIrhCSHBa7R8VpwRxVVFB-eN5rXilFKpPivOUNgghLGhdc_a0OKEM45pgcVroT2EAOw0mlluwa-P7tC1DV_Z-hGjs2AdftjDuAXx5c_HlpmrC94qUxrtyHdJYWhiGdPg8KG7BzxIzlOM663d3z4onnRkSnN_PZ8W395dfm4_V9ecPV83FdWU5Q2PlCHIMK6YEMG6wBMvrmiEKNUUOwEojEeHUGVRT4agDgqADqpDhVLaW0bPiavF1wWz0LvZbE-90ML0-bIS40iaOvR1AW4GtlYRbazhjRJoWmc6Bo9mw4zB7vVu8dlO7BWdzT9EMD0wfnvh-rVfhVkusKFcyG7y6N4jhxwRp1Ns-zTdlPIQpaZJ75rjGfEZf_oVuwhTzBS5UHlKoTJGFsjGkFKE7FoORnuOglzjoHAd9iIPeZ9GLP9s4Sn49fgZeL8Ae2tAl24O3cMTyr4WgQmA5V0EzLf-fbvrRzEFowuTHLKWLNGXcryD-bvIf9f8ENsbiAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540000869</pqid></control><display><type>article</type><title>Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Zhang, Qianqian ; Xiang, Rong ; Huo, Shanshan ; Zhou, Yunjiao ; Jiang, Shibo ; Wang, Qiao ; Yu, Fei</creator><creatorcontrib>Zhang, Qianqian ; Xiang, Rong ; Huo, Shanshan ; Zhou, Yunjiao ; Jiang, Shibo ; Wang, Qiao ; Yu, Fei</creatorcontrib><description>The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody–FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host–pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.</description><identifier>ISSN: 2095-9907</identifier><identifier>ISSN: 2059-3635</identifier><identifier>EISSN: 2059-3635</identifier><identifier>DOI: 10.1038/s41392-021-00653-w</identifier><identifier>PMID: 34117216</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/254 ; 692/699/255 ; Biochemistry &amp; Molecular Biology ; Cancer Research ; Cell Biology ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 - metabolism ; COVID-19 - pathology ; COVID-19 - therapy ; Host-Pathogen Interactions ; Humans ; Internal Medicine ; Life Sciences &amp; Biomedicine ; Medicine ; Medicine &amp; Public Health ; Oncology ; Pathology ; Review ; Review Article ; SARS-CoV-2 - physiology ; Science &amp; Technology ; Severe acute respiratory syndrome coronavirus 2 ; Virus Attachment ; Virus Internalization</subject><ispartof>Signal transduction and targeted therapy, 2021-06, Vol.6 (1), p.233-19, Article 233</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>208</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663661800003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-d20d419496e45a18ec577403e730deec8a80253da0736d3de20efe390a538bc43</citedby><cites>FETCH-LOGICAL-c540t-d20d419496e45a18ec577403e730deec8a80253da0736d3de20efe390a538bc43</cites><orcidid>0000-0001-8283-7135 ; 0000-0003-2996-2310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193598/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193598/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34117216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Huo, Shanshan</creatorcontrib><creatorcontrib>Zhou, Yunjiao</creatorcontrib><creatorcontrib>Jiang, Shibo</creatorcontrib><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Yu, Fei</creatorcontrib><title>Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy</title><title>Signal transduction and targeted therapy</title><addtitle>Sig Transduct Target Ther</addtitle><addtitle>SIGNAL TRANSDUCT TAR</addtitle><addtitle>Signal Transduct Target Ther</addtitle><description>The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody–FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host–pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.</description><subject>631/250/254</subject><subject>692/699/255</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - pathology</subject><subject>COVID-19 - therapy</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>Pathology</subject><subject>Review</subject><subject>Review Article</subject><subject>SARS-CoV-2 - physiology</subject><subject>Science &amp; Technology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Virus Attachment</subject><subject>Virus Internalization</subject><issn>2095-9907</issn><issn>2059-3635</issn><issn>2059-3635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAUhSMEolXpC7BAkdggoYD_Y2-QqqhApSIkCmwtx76ZyShjD3bSUd8eZ1IGygLhjR37Oyf32qconmP0BiMq3yaGqSIVIrhCSHBa7R8VpwRxVVFB-eN5rXilFKpPivOUNgghLGhdc_a0OKEM45pgcVroT2EAOw0mlluwa-P7tC1DV_Z-hGjs2AdftjDuAXx5c_HlpmrC94qUxrtyHdJYWhiGdPg8KG7BzxIzlOM663d3z4onnRkSnN_PZ8W395dfm4_V9ecPV83FdWU5Q2PlCHIMK6YEMG6wBMvrmiEKNUUOwEojEeHUGVRT4agDgqADqpDhVLaW0bPiavF1wWz0LvZbE-90ML0-bIS40iaOvR1AW4GtlYRbazhjRJoWmc6Bo9mw4zB7vVu8dlO7BWdzT9EMD0wfnvh-rVfhVkusKFcyG7y6N4jhxwRp1Ns-zTdlPIQpaZJ75rjGfEZf_oVuwhTzBS5UHlKoTJGFsjGkFKE7FoORnuOglzjoHAd9iIPeZ9GLP9s4Sn49fgZeL8Ae2tAl24O3cMTyr4WgQmA5V0EzLf-fbvrRzEFowuTHLKWLNGXcryD-bvIf9f8ENsbiAQ</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Zhang, Qianqian</creator><creator>Xiang, Rong</creator><creator>Huo, Shanshan</creator><creator>Zhou, Yunjiao</creator><creator>Jiang, Shibo</creator><creator>Wang, Qiao</creator><creator>Yu, Fei</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8283-7135</orcidid><orcidid>https://orcid.org/0000-0003-2996-2310</orcidid></search><sort><creationdate>20210611</creationdate><title>Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy</title><author>Zhang, Qianqian ; Xiang, Rong ; Huo, Shanshan ; Zhou, Yunjiao ; Jiang, Shibo ; Wang, Qiao ; Yu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d20d419496e45a18ec577403e730deec8a80253da0736d3de20efe390a538bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/250/254</topic><topic>692/699/255</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - pathology</topic><topic>COVID-19 - therapy</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>Pathology</topic><topic>Review</topic><topic>Review Article</topic><topic>SARS-CoV-2 - physiology</topic><topic>Science &amp; Technology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Virus Attachment</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Huo, Shanshan</creatorcontrib><creatorcontrib>Zhou, Yunjiao</creatorcontrib><creatorcontrib>Jiang, Shibo</creatorcontrib><creatorcontrib>Wang, Qiao</creatorcontrib><creatorcontrib>Yu, Fei</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Signal transduction and targeted therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qianqian</au><au>Xiang, Rong</au><au>Huo, Shanshan</au><au>Zhou, Yunjiao</au><au>Jiang, Shibo</au><au>Wang, Qiao</au><au>Yu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy</atitle><jtitle>Signal transduction and targeted therapy</jtitle><stitle>Sig Transduct Target Ther</stitle><stitle>SIGNAL TRANSDUCT TAR</stitle><addtitle>Signal Transduct Target Ther</addtitle><date>2021-06-11</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>233</spage><epage>19</epage><pages>233-19</pages><artnum>233</artnum><issn>2095-9907</issn><issn>2059-3635</issn><eissn>2059-3635</eissn><abstract>The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody–FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host–pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34117216</pmid><doi>10.1038/s41392-021-00653-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8283-7135</orcidid><orcidid>https://orcid.org/0000-0003-2996-2310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-9907
ispartof Signal transduction and targeted therapy, 2021-06, Vol.6 (1), p.233-19, Article 233
issn 2095-9907
2059-3635
2059-3635
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8193598
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals
subjects 631/250/254
692/699/255
Biochemistry & Molecular Biology
Cancer Research
Cell Biology
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - metabolism
COVID-19 - pathology
COVID-19 - therapy
Host-Pathogen Interactions
Humans
Internal Medicine
Life Sciences & Biomedicine
Medicine
Medicine & Public Health
Oncology
Pathology
Review
Review Article
SARS-CoV-2 - physiology
Science & Technology
Severe acute respiratory syndrome coronavirus 2
Virus Attachment
Virus Internalization
title Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20interaction%20between%20SARS-CoV-2%20and%20host%20cells%20and%20interventional%20therapy&rft.jtitle=Signal%20transduction%20and%20targeted%20therapy&rft.au=Zhang,%20Qianqian&rft.date=2021-06-11&rft.volume=6&rft.issue=1&rft.spage=233&rft.epage=19&rft.pages=233-19&rft.artnum=233&rft.issn=2095-9907&rft.eissn=2059-3635&rft_id=info:doi/10.1038/s41392-021-00653-w&rft_dat=%3Cproquest_pubme%3E2540000869%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540000869&rft_id=info:pmid/34117216&rft_doaj_id=oai_doaj_org_article_c61cc825cca54428ab0afded3fe3f5e4&rfr_iscdi=true