Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing

Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2021-06, Vol.53 (6), p.895-905
Hauptverfasser: Leibowitz, Mitchell L., Papathanasiou, Stamatis, Doerfler, Phillip A., Blaine, Logan J., Sun, Lili, Yao, Yu, Zhang, Cheng-Zhong, Weiss, Mitchell J., Pellman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 6
container_start_page 895
container_title Nature genetics
container_volume 53
creator Leibowitz, Mitchell L.
Papathanasiou, Stamatis
Doerfler, Phillip A.
Blaine, Logan J.
Sun, Lili
Yao, Yu
Zhang, Cheng-Zhong
Weiss, Mitchell J.
Pellman, David
description Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored. Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.
doi_str_mv 10.1038/s41588-021-00838-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664591438</galeid><sourcerecordid>A664591438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</originalsourceid><addsrcrecordid>eNqNktFqFDEUhgex2Fp9AS9kwBt7kZpMMpnMjVAGq1sKla16G7KZM7MpM8mazIje-Q6-oU_iqVtbV0QkgYTk-__kHP4se8LoMaNcvUiClUoRWjBCqeKKVPeyA1YKSVjF1H3cU8mIoFzuZw9TuqKUCUHVg2yfcyWk5PIgO2vWMYxhWke3SS7lBqfPgyeTiT1MuQ0-wccZvIU8dHmzXFy-XX7_-q0xqc578GGEHFo3Od8_yvY6MyR4fLMeZu9PX71r3pDzi9eL5uScWFmVE5HVqgTZlYzaThpeG8paUAVrRVEbzosKP1ZXCgAKaluLNTK1aqGtu9YopPlh9nLru5lXI7QW_BTNoDfRjSZ-0cE4vXvj3Vr34ZNWrC4E52jw_MYgBiwtTXp0ycIwGA9hTrooWcG5EEoi-uwP9CrM0WN5SAlayrJW_I7qzQDa-S7gu_baVJ9IKcqaCa6QOv4LhaOF0WGfoXN4viM42hEgM8HnqTdzSnpxufx_9uLDLltsWRtDShG6294xqq-TpbfJ0pgs_TNZukLR09-7fiv5FSUE-BZIeOV7iHet-oftD2JO1pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540565983</pqid></control><display><type>article</type><title>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Leibowitz, Mitchell L. ; Papathanasiou, Stamatis ; Doerfler, Phillip A. ; Blaine, Logan J. ; Sun, Lili ; Yao, Yu ; Zhang, Cheng-Zhong ; Weiss, Mitchell J. ; Pellman, David</creator><creatorcontrib>Leibowitz, Mitchell L. ; Papathanasiou, Stamatis ; Doerfler, Phillip A. ; Blaine, Logan J. ; Sun, Lili ; Yao, Yu ; Zhang, Cheng-Zhong ; Weiss, Mitchell J. ; Pellman, David</creatorcontrib><description>Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored. Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-021-00838-7</identifier><identifier>PMID: 33846636</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/19 ; 14/63 ; 45/23 ; 631/1647/1513 ; 631/208 ; 631/208/212 ; 631/208/514 ; 631/80 ; Abnormalities ; Agriculture ; Anemia, Sickle Cell - genetics ; Animal Genetics and Genomics ; Antigens, CD34 - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Blood diseases ; Cancer ; Cancer Research ; Cell cycle ; Cell Division ; Chromosome rearrangements ; Chromosomes ; Chromosomes, Human - genetics ; Chromothripsis ; Congenital diseases ; CRISPR ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems - genetics ; Deoxyribonucleic acid ; DNA ; DNA Cleavage ; DNA damage ; Editing ; Gene Editing ; Gene Function ; Gene sequencing ; Genes ; Genome editing ; Genome, Human ; Genomes ; Human chromosome abnormalities ; Human Genetics ; Humans ; Micronuclei ; Micronucleus, Germline - genetics ; Risk factors ; Sickle cell disease ; Tumor Suppressor Protein p53 - metabolism ; Whole genome sequencing</subject><ispartof>Nature genetics, 2021-06, Vol.53 (6), p.895-905</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</citedby><cites>FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</cites><orcidid>0000-0003-0937-9216 ; 0000-0001-8825-7158 ; 0000-0001-7566-9073 ; 0000-0001-5306-8031 ; 0000-0003-1874-5441 ; 0000-0003-2460-3036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-021-00838-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-021-00838-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33846636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leibowitz, Mitchell L.</creatorcontrib><creatorcontrib>Papathanasiou, Stamatis</creatorcontrib><creatorcontrib>Doerfler, Phillip A.</creatorcontrib><creatorcontrib>Blaine, Logan J.</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Zhang, Cheng-Zhong</creatorcontrib><creatorcontrib>Weiss, Mitchell J.</creatorcontrib><creatorcontrib>Pellman, David</creatorcontrib><title>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored. Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.</description><subject>14/19</subject><subject>14/63</subject><subject>45/23</subject><subject>631/1647/1513</subject><subject>631/208</subject><subject>631/208/212</subject><subject>631/208/514</subject><subject>631/80</subject><subject>Abnormalities</subject><subject>Agriculture</subject><subject>Anemia, Sickle Cell - genetics</subject><subject>Animal Genetics and Genomics</subject><subject>Antigens, CD34 - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood diseases</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Chromosome rearrangements</subject><subject>Chromosomes</subject><subject>Chromosomes, Human - genetics</subject><subject>Chromothripsis</subject><subject>Congenital diseases</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Cleavage</subject><subject>DNA damage</subject><subject>Editing</subject><subject>Gene Editing</subject><subject>Gene Function</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genome editing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Human chromosome abnormalities</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Micronuclei</subject><subject>Micronucleus, Germline - genetics</subject><subject>Risk factors</subject><subject>Sickle cell disease</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Whole genome sequencing</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNktFqFDEUhgex2Fp9AS9kwBt7kZpMMpnMjVAGq1sKla16G7KZM7MpM8mazIje-Q6-oU_iqVtbV0QkgYTk-__kHP4se8LoMaNcvUiClUoRWjBCqeKKVPeyA1YKSVjF1H3cU8mIoFzuZw9TuqKUCUHVg2yfcyWk5PIgO2vWMYxhWke3SS7lBqfPgyeTiT1MuQ0-wccZvIU8dHmzXFy-XX7_-q0xqc578GGEHFo3Od8_yvY6MyR4fLMeZu9PX71r3pDzi9eL5uScWFmVE5HVqgTZlYzaThpeG8paUAVrRVEbzosKP1ZXCgAKaluLNTK1aqGtu9YopPlh9nLru5lXI7QW_BTNoDfRjSZ-0cE4vXvj3Vr34ZNWrC4E52jw_MYgBiwtTXp0ycIwGA9hTrooWcG5EEoi-uwP9CrM0WN5SAlayrJW_I7qzQDa-S7gu_baVJ9IKcqaCa6QOv4LhaOF0WGfoXN4viM42hEgM8HnqTdzSnpxufx_9uLDLltsWRtDShG6294xqq-TpbfJ0pgs_TNZukLR09-7fiv5FSUE-BZIeOV7iHet-oftD2JO1pw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Leibowitz, Mitchell L.</creator><creator>Papathanasiou, Stamatis</creator><creator>Doerfler, Phillip A.</creator><creator>Blaine, Logan J.</creator><creator>Sun, Lili</creator><creator>Yao, Yu</creator><creator>Zhang, Cheng-Zhong</creator><creator>Weiss, Mitchell J.</creator><creator>Pellman, David</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0937-9216</orcidid><orcidid>https://orcid.org/0000-0001-8825-7158</orcidid><orcidid>https://orcid.org/0000-0001-7566-9073</orcidid><orcidid>https://orcid.org/0000-0001-5306-8031</orcidid><orcidid>https://orcid.org/0000-0003-1874-5441</orcidid><orcidid>https://orcid.org/0000-0003-2460-3036</orcidid></search><sort><creationdate>20210601</creationdate><title>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</title><author>Leibowitz, Mitchell L. ; Papathanasiou, Stamatis ; Doerfler, Phillip A. ; Blaine, Logan J. ; Sun, Lili ; Yao, Yu ; Zhang, Cheng-Zhong ; Weiss, Mitchell J. ; Pellman, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/19</topic><topic>14/63</topic><topic>45/23</topic><topic>631/1647/1513</topic><topic>631/208</topic><topic>631/208/212</topic><topic>631/208/514</topic><topic>631/80</topic><topic>Abnormalities</topic><topic>Agriculture</topic><topic>Anemia, Sickle Cell - genetics</topic><topic>Animal Genetics and Genomics</topic><topic>Antigens, CD34 - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood diseases</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Chromosome rearrangements</topic><topic>Chromosomes</topic><topic>Chromosomes, Human - genetics</topic><topic>Chromothripsis</topic><topic>Congenital diseases</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Cleavage</topic><topic>DNA damage</topic><topic>Editing</topic><topic>Gene Editing</topic><topic>Gene Function</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genome editing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Human chromosome abnormalities</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Micronuclei</topic><topic>Micronucleus, Germline - genetics</topic><topic>Risk factors</topic><topic>Sickle cell disease</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leibowitz, Mitchell L.</creatorcontrib><creatorcontrib>Papathanasiou, Stamatis</creatorcontrib><creatorcontrib>Doerfler, Phillip A.</creatorcontrib><creatorcontrib>Blaine, Logan J.</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Zhang, Cheng-Zhong</creatorcontrib><creatorcontrib>Weiss, Mitchell J.</creatorcontrib><creatorcontrib>Pellman, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibowitz, Mitchell L.</au><au>Papathanasiou, Stamatis</au><au>Doerfler, Phillip A.</au><au>Blaine, Logan J.</au><au>Sun, Lili</au><au>Yao, Yu</au><au>Zhang, Cheng-Zhong</au><au>Weiss, Mitchell J.</au><au>Pellman, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>53</volume><issue>6</issue><spage>895</spage><epage>905</epage><pages>895-905</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored. Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33846636</pmid><doi>10.1038/s41588-021-00838-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0937-9216</orcidid><orcidid>https://orcid.org/0000-0001-8825-7158</orcidid><orcidid>https://orcid.org/0000-0001-7566-9073</orcidid><orcidid>https://orcid.org/0000-0001-5306-8031</orcidid><orcidid>https://orcid.org/0000-0003-1874-5441</orcidid><orcidid>https://orcid.org/0000-0003-2460-3036</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2021-06, Vol.53 (6), p.895-905
issn 1061-4036
1546-1718
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192433
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 14/19
14/63
45/23
631/1647/1513
631/208
631/208/212
631/208/514
631/80
Abnormalities
Agriculture
Anemia, Sickle Cell - genetics
Animal Genetics and Genomics
Antigens, CD34 - metabolism
Biomedical and Life Sciences
Biomedicine
Blood diseases
Cancer
Cancer Research
Cell cycle
Cell Division
Chromosome rearrangements
Chromosomes
Chromosomes, Human - genetics
Chromothripsis
Congenital diseases
CRISPR
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems - genetics
Deoxyribonucleic acid
DNA
DNA Cleavage
DNA damage
Editing
Gene Editing
Gene Function
Gene sequencing
Genes
Genome editing
Genome, Human
Genomes
Human chromosome abnormalities
Human Genetics
Humans
Micronuclei
Micronucleus, Germline - genetics
Risk factors
Sickle cell disease
Tumor Suppressor Protein p53 - metabolism
Whole genome sequencing
title Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromothripsis%20as%20an%20on-target%20consequence%20of%20CRISPR%E2%80%93Cas9%20genome%20editing&rft.jtitle=Nature%20genetics&rft.au=Leibowitz,%20Mitchell%20L.&rft.date=2021-06-01&rft.volume=53&rft.issue=6&rft.spage=895&rft.epage=905&rft.pages=895-905&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-021-00838-7&rft_dat=%3Cgale_pubme%3EA664591438%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540565983&rft_id=info:pmid/33846636&rft_galeid=A664591438&rfr_iscdi=true