Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing
Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2021-06, Vol.53 (6), p.895-905 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | 6 |
container_start_page | 895 |
container_title | Nature genetics |
container_volume | 53 |
creator | Leibowitz, Mitchell L. Papathanasiou, Stamatis Doerfler, Phillip A. Blaine, Logan J. Sun, Lili Yao, Yu Zhang, Cheng-Zhong Weiss, Mitchell J. Pellman, David |
description | Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.
Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing. |
doi_str_mv | 10.1038/s41588-021-00838-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664591438</galeid><sourcerecordid>A664591438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</originalsourceid><addsrcrecordid>eNqNktFqFDEUhgex2Fp9AS9kwBt7kZpMMpnMjVAGq1sKla16G7KZM7MpM8mazIje-Q6-oU_iqVtbV0QkgYTk-__kHP4se8LoMaNcvUiClUoRWjBCqeKKVPeyA1YKSVjF1H3cU8mIoFzuZw9TuqKUCUHVg2yfcyWk5PIgO2vWMYxhWke3SS7lBqfPgyeTiT1MuQ0-wccZvIU8dHmzXFy-XX7_-q0xqc578GGEHFo3Od8_yvY6MyR4fLMeZu9PX71r3pDzi9eL5uScWFmVE5HVqgTZlYzaThpeG8paUAVrRVEbzosKP1ZXCgAKaluLNTK1aqGtu9YopPlh9nLru5lXI7QW_BTNoDfRjSZ-0cE4vXvj3Vr34ZNWrC4E52jw_MYgBiwtTXp0ycIwGA9hTrooWcG5EEoi-uwP9CrM0WN5SAlayrJW_I7qzQDa-S7gu_baVJ9IKcqaCa6QOv4LhaOF0WGfoXN4viM42hEgM8HnqTdzSnpxufx_9uLDLltsWRtDShG6294xqq-TpbfJ0pgs_TNZukLR09-7fiv5FSUE-BZIeOV7iHet-oftD2JO1pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540565983</pqid></control><display><type>article</type><title>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Leibowitz, Mitchell L. ; Papathanasiou, Stamatis ; Doerfler, Phillip A. ; Blaine, Logan J. ; Sun, Lili ; Yao, Yu ; Zhang, Cheng-Zhong ; Weiss, Mitchell J. ; Pellman, David</creator><creatorcontrib>Leibowitz, Mitchell L. ; Papathanasiou, Stamatis ; Doerfler, Phillip A. ; Blaine, Logan J. ; Sun, Lili ; Yao, Yu ; Zhang, Cheng-Zhong ; Weiss, Mitchell J. ; Pellman, David</creatorcontrib><description>Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.
Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-021-00838-7</identifier><identifier>PMID: 33846636</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/19 ; 14/63 ; 45/23 ; 631/1647/1513 ; 631/208 ; 631/208/212 ; 631/208/514 ; 631/80 ; Abnormalities ; Agriculture ; Anemia, Sickle Cell - genetics ; Animal Genetics and Genomics ; Antigens, CD34 - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Blood diseases ; Cancer ; Cancer Research ; Cell cycle ; Cell Division ; Chromosome rearrangements ; Chromosomes ; Chromosomes, Human - genetics ; Chromothripsis ; Congenital diseases ; CRISPR ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems - genetics ; Deoxyribonucleic acid ; DNA ; DNA Cleavage ; DNA damage ; Editing ; Gene Editing ; Gene Function ; Gene sequencing ; Genes ; Genome editing ; Genome, Human ; Genomes ; Human chromosome abnormalities ; Human Genetics ; Humans ; Micronuclei ; Micronucleus, Germline - genetics ; Risk factors ; Sickle cell disease ; Tumor Suppressor Protein p53 - metabolism ; Whole genome sequencing</subject><ispartof>Nature genetics, 2021-06, Vol.53 (6), p.895-905</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</citedby><cites>FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</cites><orcidid>0000-0003-0937-9216 ; 0000-0001-8825-7158 ; 0000-0001-7566-9073 ; 0000-0001-5306-8031 ; 0000-0003-1874-5441 ; 0000-0003-2460-3036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-021-00838-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-021-00838-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33846636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leibowitz, Mitchell L.</creatorcontrib><creatorcontrib>Papathanasiou, Stamatis</creatorcontrib><creatorcontrib>Doerfler, Phillip A.</creatorcontrib><creatorcontrib>Blaine, Logan J.</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Zhang, Cheng-Zhong</creatorcontrib><creatorcontrib>Weiss, Mitchell J.</creatorcontrib><creatorcontrib>Pellman, David</creatorcontrib><title>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.
Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.</description><subject>14/19</subject><subject>14/63</subject><subject>45/23</subject><subject>631/1647/1513</subject><subject>631/208</subject><subject>631/208/212</subject><subject>631/208/514</subject><subject>631/80</subject><subject>Abnormalities</subject><subject>Agriculture</subject><subject>Anemia, Sickle Cell - genetics</subject><subject>Animal Genetics and Genomics</subject><subject>Antigens, CD34 - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood diseases</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Chromosome rearrangements</subject><subject>Chromosomes</subject><subject>Chromosomes, Human - genetics</subject><subject>Chromothripsis</subject><subject>Congenital diseases</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Cleavage</subject><subject>DNA damage</subject><subject>Editing</subject><subject>Gene Editing</subject><subject>Gene Function</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genome editing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Human chromosome abnormalities</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Micronuclei</subject><subject>Micronucleus, Germline - genetics</subject><subject>Risk factors</subject><subject>Sickle cell disease</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Whole genome sequencing</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNktFqFDEUhgex2Fp9AS9kwBt7kZpMMpnMjVAGq1sKla16G7KZM7MpM8mazIje-Q6-oU_iqVtbV0QkgYTk-__kHP4se8LoMaNcvUiClUoRWjBCqeKKVPeyA1YKSVjF1H3cU8mIoFzuZw9TuqKUCUHVg2yfcyWk5PIgO2vWMYxhWke3SS7lBqfPgyeTiT1MuQ0-wccZvIU8dHmzXFy-XX7_-q0xqc578GGEHFo3Od8_yvY6MyR4fLMeZu9PX71r3pDzi9eL5uScWFmVE5HVqgTZlYzaThpeG8paUAVrRVEbzosKP1ZXCgAKaluLNTK1aqGtu9YopPlh9nLru5lXI7QW_BTNoDfRjSZ-0cE4vXvj3Vr34ZNWrC4E52jw_MYgBiwtTXp0ycIwGA9hTrooWcG5EEoi-uwP9CrM0WN5SAlayrJW_I7qzQDa-S7gu_baVJ9IKcqaCa6QOv4LhaOF0WGfoXN4viM42hEgM8HnqTdzSnpxufx_9uLDLltsWRtDShG6294xqq-TpbfJ0pgs_TNZukLR09-7fiv5FSUE-BZIeOV7iHet-oftD2JO1pw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Leibowitz, Mitchell L.</creator><creator>Papathanasiou, Stamatis</creator><creator>Doerfler, Phillip A.</creator><creator>Blaine, Logan J.</creator><creator>Sun, Lili</creator><creator>Yao, Yu</creator><creator>Zhang, Cheng-Zhong</creator><creator>Weiss, Mitchell J.</creator><creator>Pellman, David</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0937-9216</orcidid><orcidid>https://orcid.org/0000-0001-8825-7158</orcidid><orcidid>https://orcid.org/0000-0001-7566-9073</orcidid><orcidid>https://orcid.org/0000-0001-5306-8031</orcidid><orcidid>https://orcid.org/0000-0003-1874-5441</orcidid><orcidid>https://orcid.org/0000-0003-2460-3036</orcidid></search><sort><creationdate>20210601</creationdate><title>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</title><author>Leibowitz, Mitchell L. ; Papathanasiou, Stamatis ; Doerfler, Phillip A. ; Blaine, Logan J. ; Sun, Lili ; Yao, Yu ; Zhang, Cheng-Zhong ; Weiss, Mitchell J. ; Pellman, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-67b5e6f510cf6a39a01de821d429a3327663978eee20cdc41518bded9fda89a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/19</topic><topic>14/63</topic><topic>45/23</topic><topic>631/1647/1513</topic><topic>631/208</topic><topic>631/208/212</topic><topic>631/208/514</topic><topic>631/80</topic><topic>Abnormalities</topic><topic>Agriculture</topic><topic>Anemia, Sickle Cell - genetics</topic><topic>Animal Genetics and Genomics</topic><topic>Antigens, CD34 - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood diseases</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Chromosome rearrangements</topic><topic>Chromosomes</topic><topic>Chromosomes, Human - genetics</topic><topic>Chromothripsis</topic><topic>Congenital diseases</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Cleavage</topic><topic>DNA damage</topic><topic>Editing</topic><topic>Gene Editing</topic><topic>Gene Function</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genome editing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Human chromosome abnormalities</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Micronuclei</topic><topic>Micronucleus, Germline - genetics</topic><topic>Risk factors</topic><topic>Sickle cell disease</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leibowitz, Mitchell L.</creatorcontrib><creatorcontrib>Papathanasiou, Stamatis</creatorcontrib><creatorcontrib>Doerfler, Phillip A.</creatorcontrib><creatorcontrib>Blaine, Logan J.</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Zhang, Cheng-Zhong</creatorcontrib><creatorcontrib>Weiss, Mitchell J.</creatorcontrib><creatorcontrib>Pellman, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibowitz, Mitchell L.</au><au>Papathanasiou, Stamatis</au><au>Doerfler, Phillip A.</au><au>Blaine, Logan J.</au><au>Sun, Lili</au><au>Yao, Yu</au><au>Zhang, Cheng-Zhong</au><au>Weiss, Mitchell J.</au><au>Pellman, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>53</volume><issue>6</issue><spage>895</spage><epage>905</epage><pages>895-905</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR–Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR–Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.
Chromothripsis, a chromosomal shattering event, can be elicited by micronuclei and chromosome bridges formed by CRISPR–Cas9-generated double-stranded breaks. Extensive chromosomal rearrangements may thus be an on-target effect of genome editing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33846636</pmid><doi>10.1038/s41588-021-00838-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0937-9216</orcidid><orcidid>https://orcid.org/0000-0001-8825-7158</orcidid><orcidid>https://orcid.org/0000-0001-7566-9073</orcidid><orcidid>https://orcid.org/0000-0001-5306-8031</orcidid><orcidid>https://orcid.org/0000-0003-1874-5441</orcidid><orcidid>https://orcid.org/0000-0003-2460-3036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2021-06, Vol.53 (6), p.895-905 |
issn | 1061-4036 1546-1718 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192433 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 14/19 14/63 45/23 631/1647/1513 631/208 631/208/212 631/208/514 631/80 Abnormalities Agriculture Anemia, Sickle Cell - genetics Animal Genetics and Genomics Antigens, CD34 - metabolism Biomedical and Life Sciences Biomedicine Blood diseases Cancer Cancer Research Cell cycle Cell Division Chromosome rearrangements Chromosomes Chromosomes, Human - genetics Chromothripsis Congenital diseases CRISPR CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems - genetics Deoxyribonucleic acid DNA DNA Cleavage DNA damage Editing Gene Editing Gene Function Gene sequencing Genes Genome editing Genome, Human Genomes Human chromosome abnormalities Human Genetics Humans Micronuclei Micronucleus, Germline - genetics Risk factors Sickle cell disease Tumor Suppressor Protein p53 - metabolism Whole genome sequencing |
title | Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromothripsis%20as%20an%20on-target%20consequence%20of%20CRISPR%E2%80%93Cas9%20genome%20editing&rft.jtitle=Nature%20genetics&rft.au=Leibowitz,%20Mitchell%20L.&rft.date=2021-06-01&rft.volume=53&rft.issue=6&rft.spage=895&rft.epage=905&rft.pages=895-905&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-021-00838-7&rft_dat=%3Cgale_pubme%3EA664591438%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540565983&rft_id=info:pmid/33846636&rft_galeid=A664591438&rfr_iscdi=true |