Tuna robotics: hydrodynamics of rapid linear accelerations

Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2021-02, Vol.288 (1945), p.20202726-20202726
Hauptverfasser: Thandiackal, Robin, White, Carl H, Bart-Smith, Hilary, Lauder, George V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20202726
container_issue 1945
container_start_page 20202726
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 288
creator Thandiackal, Robin
White, Carl H
Bart-Smith, Hilary
Lauder, George V
description Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.
doi_str_mv 10.1098/rspb.2020.2726
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8190629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490605418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-55171ba71fdd89c34d0eb6470fde79038f402033d087dd10f7727699e59a73a93</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EoqWwMqKMLAlnO47tDkio4kuqxFJmy4kdGpTEwU6Q-t-TqKWC6XS6d-_e_RC6xpBgkOLOhy5PCBBICCfZCZrjlOOYSJaeojnIjMQiZWSGLkL4BADJBDtHM0qZpFjAHC03Q6sj73LXV0VYRtud8c7sWt2MbeTKyOuuMlFdtVb7SBeFra3XfeXacInOSl0He3WoC_T-9LhZvcTrt-fX1cM6LhiVfcwY5jjXHJfGCFnQ1IDNs5RDaSyXQEWZjvEpNSC4MRhKzgnPpLRMak61pAt0v_fthryxprBt73WtOl812u-U05X6P2mrrfpw30pgCRmZDG4PBt59DTb0qqnC-EitW-uGoEg66oClWIzSZC8tvAvB2_J4BoOagKsJuJqAqwn4uHDzN9xR_kuY_gDF3X0F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490605418</pqid></control><display><type>article</type><title>Tuna robotics: hydrodynamics of rapid linear accelerations</title><source>MEDLINE</source><source>PubMed Central</source><creator>Thandiackal, Robin ; White, Carl H ; Bart-Smith, Hilary ; Lauder, George V</creator><creatorcontrib>Thandiackal, Robin ; White, Carl H ; Bart-Smith, Hilary ; Lauder, George V</creatorcontrib><description>Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2020.2726</identifier><identifier>PMID: 33593180</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Acceleration ; Biomechanical Phenomena ; Hydrodynamics ; Robotics ; Special feature: Animal movement ; Swimming</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2021-02, Vol.288 (1945), p.20202726-20202726</ispartof><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-55171ba71fdd89c34d0eb6470fde79038f402033d087dd10f7727699e59a73a93</citedby><cites>FETCH-LOGICAL-c539t-55171ba71fdd89c34d0eb6470fde79038f402033d087dd10f7727699e59a73a93</cites><orcidid>0000-0003-0055-038X ; 0000-0001-7469-7734 ; 0000-0003-0731-286X ; 0000-0001-8201-4892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190629/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190629/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33593180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thandiackal, Robin</creatorcontrib><creatorcontrib>White, Carl H</creatorcontrib><creatorcontrib>Bart-Smith, Hilary</creatorcontrib><creatorcontrib>Lauder, George V</creatorcontrib><title>Tuna robotics: hydrodynamics of rapid linear accelerations</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.</description><subject>Acceleration</subject><subject>Biomechanical Phenomena</subject><subject>Hydrodynamics</subject><subject>Robotics</subject><subject>Special feature: Animal movement</subject><subject>Swimming</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkL1PwzAQxS0EoqWwMqKMLAlnO47tDkio4kuqxFJmy4kdGpTEwU6Q-t-TqKWC6XS6d-_e_RC6xpBgkOLOhy5PCBBICCfZCZrjlOOYSJaeojnIjMQiZWSGLkL4BADJBDtHM0qZpFjAHC03Q6sj73LXV0VYRtud8c7sWt2MbeTKyOuuMlFdtVb7SBeFra3XfeXacInOSl0He3WoC_T-9LhZvcTrt-fX1cM6LhiVfcwY5jjXHJfGCFnQ1IDNs5RDaSyXQEWZjvEpNSC4MRhKzgnPpLRMak61pAt0v_fthryxprBt73WtOl812u-U05X6P2mrrfpw30pgCRmZDG4PBt59DTb0qqnC-EitW-uGoEg66oClWIzSZC8tvAvB2_J4BoOagKsJuJqAqwn4uHDzN9xR_kuY_gDF3X0F</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Thandiackal, Robin</creator><creator>White, Carl H</creator><creator>Bart-Smith, Hilary</creator><creator>Lauder, George V</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0055-038X</orcidid><orcidid>https://orcid.org/0000-0001-7469-7734</orcidid><orcidid>https://orcid.org/0000-0003-0731-286X</orcidid><orcidid>https://orcid.org/0000-0001-8201-4892</orcidid></search><sort><creationdate>20210224</creationdate><title>Tuna robotics: hydrodynamics of rapid linear accelerations</title><author>Thandiackal, Robin ; White, Carl H ; Bart-Smith, Hilary ; Lauder, George V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-55171ba71fdd89c34d0eb6470fde79038f402033d087dd10f7727699e59a73a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Biomechanical Phenomena</topic><topic>Hydrodynamics</topic><topic>Robotics</topic><topic>Special feature: Animal movement</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thandiackal, Robin</creatorcontrib><creatorcontrib>White, Carl H</creatorcontrib><creatorcontrib>Bart-Smith, Hilary</creatorcontrib><creatorcontrib>Lauder, George V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thandiackal, Robin</au><au>White, Carl H</au><au>Bart-Smith, Hilary</au><au>Lauder, George V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuna robotics: hydrodynamics of rapid linear accelerations</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2021-02-24</date><risdate>2021</risdate><volume>288</volume><issue>1945</issue><spage>20202726</spage><epage>20202726</epage><pages>20202726-20202726</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>33593180</pmid><doi>10.1098/rspb.2020.2726</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0055-038X</orcidid><orcidid>https://orcid.org/0000-0001-7469-7734</orcidid><orcidid>https://orcid.org/0000-0003-0731-286X</orcidid><orcidid>https://orcid.org/0000-0001-8201-4892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2021-02, Vol.288 (1945), p.20202726-20202726
issn 0962-8452
1471-2954
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8190629
source MEDLINE; PubMed Central
subjects Acceleration
Biomechanical Phenomena
Hydrodynamics
Robotics
Special feature: Animal movement
Swimming
title Tuna robotics: hydrodynamics of rapid linear accelerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuna%20robotics:%20hydrodynamics%20of%20rapid%20linear%20accelerations&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Thandiackal,%20Robin&rft.date=2021-02-24&rft.volume=288&rft.issue=1945&rft.spage=20202726&rft.epage=20202726&rft.pages=20202726-20202726&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2020.2726&rft_dat=%3Cproquest_pubme%3E2490605418%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490605418&rft_id=info:pmid/33593180&rfr_iscdi=true