Identification of a population of peripheral sensory neurons that regulates blood pressure
The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2021-06, Vol.35 (9), p.109191-109191, Article 109191 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109191 |
---|---|
container_issue | 9 |
container_start_page | 109191 |
container_title | Cell reports (Cambridge) |
container_volume | 35 |
creator | Morelli, Chiara Castaldi, Laura Brown, Sam J. Streich, Lina L. Websdale, Alexander Taberner, Francisco J. Cerreti, Blanka Barenghi, Alessandro Blum, Kevin M. Sawitzke, Julie Frank, Tessa Steffens, Laura K. Doleschall, Balint Serrao, Joana Ferrarini, Denise Lechner, Stefan G. Prevedel, Robert Heppenstall, Paul A. |
description | The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.
[Display omitted]
•TrkC+/Th+ DRG neurons project to blood vessels•Local stimulation of TrkC+ DRG neurons decreases vessel diameter and blood flow•Systemic activation of TrkC+ DRG neurons increases blood pressure and heart rate•Ablation of TrkC+ neurons dysregulates cardiovascular homeostasis and is lethal
Morelli et al. identify a subpopulation of peripheral sensory neurons marked by TrkC and Th that projects to distal blood vessels. They demonstrate that these neurons regulate peripheral perfusion, blood pressure, and heart rate. |
doi_str_mv | 10.1016/j.celrep.2021.109191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124721005374</els_id><sourcerecordid>2536801016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-db8549c497b9504606c8a206495059fcc2c776c60d9849f1c40a13ec55a65493</originalsourceid><addsrcrecordid>eNp9UctOxCAUJUbjGPUPjGHppiNQCmVjYoyPSSZx48oNYejtDJNOqdCa-PfSVEfdyAbu5ZxzHwehC0rmlFBxvZ1baAJ0c0YYTSlFFT1AJ4xRmlHG5eGv9wydx7gl6QhCqeLHaJZzIqVk8gS9Lipoe1c7a3rnW-xrbHDnu6HZxx0E120gmAZHaKMPH7iFIfg24n5jehxgPaIh4lXjfYW7ADEOAc7QUW2aCOdf9yl6ebh_uXvKls-Pi7vbZWa5yPusWpUFV5YruVIF4YIIWxpGBE9RoWprmZVSWEEqVXJVU8uJoTnYojAiEfNTdDPJdsNqB5VN46RWdRfczoQP7Y3Tf39at9Fr_65LWkpVlkng6ksg-LcBYq93Lqb1NqYFP0TNilyUZFx7gvIJaoOPMUC9L0OJHhF6qydj9GiMnoxJtMvfLe5J3zb8zABpT-8Ogo7WQWuhcgFsryvv_q_wCcnVoj0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536801016</pqid></control><display><type>article</type><title>Identification of a population of peripheral sensory neurons that regulates blood pressure</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Cell Press Free Archives(OpenAccess)</source><creator>Morelli, Chiara ; Castaldi, Laura ; Brown, Sam J. ; Streich, Lina L. ; Websdale, Alexander ; Taberner, Francisco J. ; Cerreti, Blanka ; Barenghi, Alessandro ; Blum, Kevin M. ; Sawitzke, Julie ; Frank, Tessa ; Steffens, Laura K. ; Doleschall, Balint ; Serrao, Joana ; Ferrarini, Denise ; Lechner, Stefan G. ; Prevedel, Robert ; Heppenstall, Paul A.</creator><creatorcontrib>Morelli, Chiara ; Castaldi, Laura ; Brown, Sam J. ; Streich, Lina L. ; Websdale, Alexander ; Taberner, Francisco J. ; Cerreti, Blanka ; Barenghi, Alessandro ; Blum, Kevin M. ; Sawitzke, Julie ; Frank, Tessa ; Steffens, Laura K. ; Doleschall, Balint ; Serrao, Joana ; Ferrarini, Denise ; Lechner, Stefan G. ; Prevedel, Robert ; Heppenstall, Paul A.</creatorcontrib><description>The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.
[Display omitted]
•TrkC+/Th+ DRG neurons project to blood vessels•Local stimulation of TrkC+ DRG neurons decreases vessel diameter and blood flow•Systemic activation of TrkC+ DRG neurons increases blood pressure and heart rate•Ablation of TrkC+ neurons dysregulates cardiovascular homeostasis and is lethal
Morelli et al. identify a subpopulation of peripheral sensory neurons marked by TrkC and Th that projects to distal blood vessels. They demonstrate that these neurons regulate peripheral perfusion, blood pressure, and heart rate.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2021.109191</identifier><identifier>PMID: 34077727</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Behavior, Animal ; blood pressure ; Blood Pressure - physiology ; cardiovascular homeostasis ; DRG ; Fluorescein - metabolism ; Ganglia, Spinal - physiology ; Heart Rate - physiology ; Mice, Transgenic ; peripheral nervous system ; Receptor, trkC - metabolism ; Sensory Receptor Cells - physiology ; TrkC</subject><ispartof>Cell reports (Cambridge), 2021-06, Vol.35 (9), p.109191-109191, Article 109191</ispartof><rights>2021 European Molecular Biology Laboratory</rights><rights>Copyright © 2021 European Molecular Biology Laboratory. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 European Molecular Biology Laboratory 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-db8549c497b9504606c8a206495059fcc2c776c60d9849f1c40a13ec55a65493</citedby><cites>FETCH-LOGICAL-c463t-db8549c497b9504606c8a206495059fcc2c776c60d9849f1c40a13ec55a65493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34077727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morelli, Chiara</creatorcontrib><creatorcontrib>Castaldi, Laura</creatorcontrib><creatorcontrib>Brown, Sam J.</creatorcontrib><creatorcontrib>Streich, Lina L.</creatorcontrib><creatorcontrib>Websdale, Alexander</creatorcontrib><creatorcontrib>Taberner, Francisco J.</creatorcontrib><creatorcontrib>Cerreti, Blanka</creatorcontrib><creatorcontrib>Barenghi, Alessandro</creatorcontrib><creatorcontrib>Blum, Kevin M.</creatorcontrib><creatorcontrib>Sawitzke, Julie</creatorcontrib><creatorcontrib>Frank, Tessa</creatorcontrib><creatorcontrib>Steffens, Laura K.</creatorcontrib><creatorcontrib>Doleschall, Balint</creatorcontrib><creatorcontrib>Serrao, Joana</creatorcontrib><creatorcontrib>Ferrarini, Denise</creatorcontrib><creatorcontrib>Lechner, Stefan G.</creatorcontrib><creatorcontrib>Prevedel, Robert</creatorcontrib><creatorcontrib>Heppenstall, Paul A.</creatorcontrib><title>Identification of a population of peripheral sensory neurons that regulates blood pressure</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.
[Display omitted]
•TrkC+/Th+ DRG neurons project to blood vessels•Local stimulation of TrkC+ DRG neurons decreases vessel diameter and blood flow•Systemic activation of TrkC+ DRG neurons increases blood pressure and heart rate•Ablation of TrkC+ neurons dysregulates cardiovascular homeostasis and is lethal
Morelli et al. identify a subpopulation of peripheral sensory neurons marked by TrkC and Th that projects to distal blood vessels. They demonstrate that these neurons regulate peripheral perfusion, blood pressure, and heart rate.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>blood pressure</subject><subject>Blood Pressure - physiology</subject><subject>cardiovascular homeostasis</subject><subject>DRG</subject><subject>Fluorescein - metabolism</subject><subject>Ganglia, Spinal - physiology</subject><subject>Heart Rate - physiology</subject><subject>Mice, Transgenic</subject><subject>peripheral nervous system</subject><subject>Receptor, trkC - metabolism</subject><subject>Sensory Receptor Cells - physiology</subject><subject>TrkC</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOxCAUJUbjGPUPjGHppiNQCmVjYoyPSSZx48oNYejtDJNOqdCa-PfSVEfdyAbu5ZxzHwehC0rmlFBxvZ1baAJ0c0YYTSlFFT1AJ4xRmlHG5eGv9wydx7gl6QhCqeLHaJZzIqVk8gS9Lipoe1c7a3rnW-xrbHDnu6HZxx0E120gmAZHaKMPH7iFIfg24n5jehxgPaIh4lXjfYW7ADEOAc7QUW2aCOdf9yl6ebh_uXvKls-Pi7vbZWa5yPusWpUFV5YruVIF4YIIWxpGBE9RoWprmZVSWEEqVXJVU8uJoTnYojAiEfNTdDPJdsNqB5VN46RWdRfczoQP7Y3Tf39at9Fr_65LWkpVlkng6ksg-LcBYq93Lqb1NqYFP0TNilyUZFx7gvIJaoOPMUC9L0OJHhF6qydj9GiMnoxJtMvfLe5J3zb8zABpT-8Ogo7WQWuhcgFsryvv_q_wCcnVoj0</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Morelli, Chiara</creator><creator>Castaldi, Laura</creator><creator>Brown, Sam J.</creator><creator>Streich, Lina L.</creator><creator>Websdale, Alexander</creator><creator>Taberner, Francisco J.</creator><creator>Cerreti, Blanka</creator><creator>Barenghi, Alessandro</creator><creator>Blum, Kevin M.</creator><creator>Sawitzke, Julie</creator><creator>Frank, Tessa</creator><creator>Steffens, Laura K.</creator><creator>Doleschall, Balint</creator><creator>Serrao, Joana</creator><creator>Ferrarini, Denise</creator><creator>Lechner, Stefan G.</creator><creator>Prevedel, Robert</creator><creator>Heppenstall, Paul A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210601</creationdate><title>Identification of a population of peripheral sensory neurons that regulates blood pressure</title><author>Morelli, Chiara ; Castaldi, Laura ; Brown, Sam J. ; Streich, Lina L. ; Websdale, Alexander ; Taberner, Francisco J. ; Cerreti, Blanka ; Barenghi, Alessandro ; Blum, Kevin M. ; Sawitzke, Julie ; Frank, Tessa ; Steffens, Laura K. ; Doleschall, Balint ; Serrao, Joana ; Ferrarini, Denise ; Lechner, Stefan G. ; Prevedel, Robert ; Heppenstall, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-db8549c497b9504606c8a206495059fcc2c776c60d9849f1c40a13ec55a65493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>blood pressure</topic><topic>Blood Pressure - physiology</topic><topic>cardiovascular homeostasis</topic><topic>DRG</topic><topic>Fluorescein - metabolism</topic><topic>Ganglia, Spinal - physiology</topic><topic>Heart Rate - physiology</topic><topic>Mice, Transgenic</topic><topic>peripheral nervous system</topic><topic>Receptor, trkC - metabolism</topic><topic>Sensory Receptor Cells - physiology</topic><topic>TrkC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morelli, Chiara</creatorcontrib><creatorcontrib>Castaldi, Laura</creatorcontrib><creatorcontrib>Brown, Sam J.</creatorcontrib><creatorcontrib>Streich, Lina L.</creatorcontrib><creatorcontrib>Websdale, Alexander</creatorcontrib><creatorcontrib>Taberner, Francisco J.</creatorcontrib><creatorcontrib>Cerreti, Blanka</creatorcontrib><creatorcontrib>Barenghi, Alessandro</creatorcontrib><creatorcontrib>Blum, Kevin M.</creatorcontrib><creatorcontrib>Sawitzke, Julie</creatorcontrib><creatorcontrib>Frank, Tessa</creatorcontrib><creatorcontrib>Steffens, Laura K.</creatorcontrib><creatorcontrib>Doleschall, Balint</creatorcontrib><creatorcontrib>Serrao, Joana</creatorcontrib><creatorcontrib>Ferrarini, Denise</creatorcontrib><creatorcontrib>Lechner, Stefan G.</creatorcontrib><creatorcontrib>Prevedel, Robert</creatorcontrib><creatorcontrib>Heppenstall, Paul A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morelli, Chiara</au><au>Castaldi, Laura</au><au>Brown, Sam J.</au><au>Streich, Lina L.</au><au>Websdale, Alexander</au><au>Taberner, Francisco J.</au><au>Cerreti, Blanka</au><au>Barenghi, Alessandro</au><au>Blum, Kevin M.</au><au>Sawitzke, Julie</au><au>Frank, Tessa</au><au>Steffens, Laura K.</au><au>Doleschall, Balint</au><au>Serrao, Joana</au><au>Ferrarini, Denise</au><au>Lechner, Stefan G.</au><au>Prevedel, Robert</au><au>Heppenstall, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a population of peripheral sensory neurons that regulates blood pressure</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>35</volume><issue>9</issue><spage>109191</spage><epage>109191</epage><pages>109191-109191</pages><artnum>109191</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.
[Display omitted]
•TrkC+/Th+ DRG neurons project to blood vessels•Local stimulation of TrkC+ DRG neurons decreases vessel diameter and blood flow•Systemic activation of TrkC+ DRG neurons increases blood pressure and heart rate•Ablation of TrkC+ neurons dysregulates cardiovascular homeostasis and is lethal
Morelli et al. identify a subpopulation of peripheral sensory neurons marked by TrkC and Th that projects to distal blood vessels. They demonstrate that these neurons regulate peripheral perfusion, blood pressure, and heart rate.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34077727</pmid><doi>10.1016/j.celrep.2021.109191</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2021-06, Vol.35 (9), p.109191-109191, Article 109191 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187988 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Cell Press Free Archives(OpenAccess) |
subjects | Animals Behavior, Animal blood pressure Blood Pressure - physiology cardiovascular homeostasis DRG Fluorescein - metabolism Ganglia, Spinal - physiology Heart Rate - physiology Mice, Transgenic peripheral nervous system Receptor, trkC - metabolism Sensory Receptor Cells - physiology TrkC |
title | Identification of a population of peripheral sensory neurons that regulates blood pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20population%20of%20peripheral%20sensory%20neurons%20that%20regulates%20blood%20pressure&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Morelli,%20Chiara&rft.date=2021-06-01&rft.volume=35&rft.issue=9&rft.spage=109191&rft.epage=109191&rft.pages=109191-109191&rft.artnum=109191&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2021.109191&rft_dat=%3Cproquest_pubme%3E2536801016%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536801016&rft_id=info:pmid/34077727&rft_els_id=S2211124721005374&rfr_iscdi=true |