Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease
Aim Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers. Methods This is an observational cohort study of patients wi...
Gespeichert in:
Veröffentlicht in: | Diabetologia 2021-07, Vol.64 (7), p.1504-1515 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1515 |
---|---|
container_issue | 7 |
container_start_page | 1504 |
container_title | Diabetologia |
container_volume | 64 |
creator | Chan, Lili Nadkarni, Girish N. Fleming, Fergus McCullough, James R. Connolly, Patricia Mosoyan, Gohar El Salem, Fadi Kattan, Michael W. Vassalotti, Joseph A. Murphy, Barbara Donovan, Michael J. Coca, Steven G. Damrauer, Scott M. |
description | Aim
Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers.
Methods
This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years.
Results
In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min
−1
[1.73 m]
−2
, the urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On cross-validation in derivation (
n
= 686), KidneyIntelX had an AUC of 0.77 (95% CI 0.74, 0.79). In validation (
n
= 460), the AUC was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and 0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO categorisation (
p
|
doi_str_mv | 10.1007/s00125-021-05444-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508575475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4ce7a8f53b818f1b7ff2d6c11a8afaf3100e01d9789d5472770ed238adeddd7b3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi1ERUPhD3BAlrhwWRjb69i5IKHyKVXqpZW4WV57NnWzsYO9G6n_hJ-L0w3l48BpNJ5n3pnxS8gLBm8YgHpbABiXDXDWgGzbtoFHZMFawRtouX5MFod6w_Ty2yl5WsotAAjZLp-QUyHUSsklLMiPD5jD3o4hRWqjp3s7BD-nqaeWbq27CRHpgDbHENc0h7KhxaWMdCqHhy6krc0bzPf9OKAbc4rB0V2VwTjSKmfpmOguow9urDGtM5ZynOGD7XCs_Cb4iHc1L2gLPiMnvR0KPj_GM3L96ePV-Zfm4vLz1_P3F42TLYxN61BZ3UvRaaZ71qm-537pGLPa9rYX9aMQmF8pvfKyVVwpQM-Fth6996oTZ-TdrLubui16VzfOdjC7HOpVdybZYP6uxHBj1mlv6jzFQVeB10eBnL5PWEazDcXhMNiIaSqGS9BS1dmyoq_-QW_TlGM9r1JCa7WSTFWKz5TLqZSM_cMyDMzBeDMbb6rx5t54A7Xp5Z9nPLT8croCYgZKLcU15t-z_yP7Ez7gvY0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538879517</pqid></control><display><type>article</type><title>Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chan, Lili ; Nadkarni, Girish N. ; Fleming, Fergus ; McCullough, James R. ; Connolly, Patricia ; Mosoyan, Gohar ; El Salem, Fadi ; Kattan, Michael W. ; Vassalotti, Joseph A. ; Murphy, Barbara ; Donovan, Michael J. ; Coca, Steven G. ; Damrauer, Scott M.</creator><creatorcontrib>Chan, Lili ; Nadkarni, Girish N. ; Fleming, Fergus ; McCullough, James R. ; Connolly, Patricia ; Mosoyan, Gohar ; El Salem, Fadi ; Kattan, Michael W. ; Vassalotti, Joseph A. ; Murphy, Barbara ; Donovan, Michael J. ; Coca, Steven G. ; Damrauer, Scott M.</creatorcontrib><description>Aim
Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers.
Methods
This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years.
Results
In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min
−1
[1.73 m]
−2
, the urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On cross-validation in derivation (
n
= 686), KidneyIntelX had an AUC of 0.77 (95% CI 0.74, 0.79). In validation (
n
= 460), the AUC was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and 0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO categorisation (
p
< 0.001). Only 10% of those scored as low risk by KidneyIntelX experienced progression (i.e., NPV of 90%). The NRI
event
for the high-risk group was 41% (
p
< 0.05).
Conclusions
KidneyIntelX improved prediction of kidney outcomes over KDIGO and clinical models in individuals with early stages of DKD.
Graphical abstract</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-021-05444-0</identifier><identifier>PMID: 33797560</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Biomarkers ; Biomarkers - analysis ; Cohort Studies ; Creatinine ; Diabetes ; Diabetes mellitus ; Diabetic Nephropathies - diagnosis ; Diabetic Nephropathies - epidemiology ; Diabetic Nephropathies - pathology ; Diabetic nephropathy ; Disease Progression ; Electronic health records ; Electronic Health Records - statistics & numerical data ; Electronic medical records ; Epidermal growth factor receptors ; Female ; Glomerular Filtration Rate ; Human Physiology ; Humans ; Internal Medicine ; Kidney diseases ; Kidney Function Tests - statistics & numerical data ; Learning algorithms ; Machine Learning ; Male ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Middle Aged ; Predictive Value of Tests ; Prognosis ; Reclassification ; Renal failure ; Risk Factors ; Risk groups ; United States - epidemiology ; Young Adult</subject><ispartof>Diabetologia, 2021-07, Vol.64 (7), p.1504-1515</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4ce7a8f53b818f1b7ff2d6c11a8afaf3100e01d9789d5472770ed238adeddd7b3</citedby><cites>FETCH-LOGICAL-c540t-4ce7a8f53b818f1b7ff2d6c11a8afaf3100e01d9789d5472770ed238adeddd7b3</cites><orcidid>0000-0001-8835-0192 ; 0000-0001-6319-4314 ; 0000-0002-3840-4161 ; 0000-0002-5276-6652 ; 0000-0003-4300-5760 ; 0000-0001-6433-0584 ; 0000-0002-2603-2778 ; 0000-0002-0928-9168 ; 0000-0002-9582-8630 ; 0000-0003-0772-598X ; 0000-0001-8009-1632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-021-05444-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-021-05444-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Lili</creatorcontrib><creatorcontrib>Nadkarni, Girish N.</creatorcontrib><creatorcontrib>Fleming, Fergus</creatorcontrib><creatorcontrib>McCullough, James R.</creatorcontrib><creatorcontrib>Connolly, Patricia</creatorcontrib><creatorcontrib>Mosoyan, Gohar</creatorcontrib><creatorcontrib>El Salem, Fadi</creatorcontrib><creatorcontrib>Kattan, Michael W.</creatorcontrib><creatorcontrib>Vassalotti, Joseph A.</creatorcontrib><creatorcontrib>Murphy, Barbara</creatorcontrib><creatorcontrib>Donovan, Michael J.</creatorcontrib><creatorcontrib>Coca, Steven G.</creatorcontrib><creatorcontrib>Damrauer, Scott M.</creatorcontrib><title>Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aim
Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers.
Methods
This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years.
Results
In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min
−1
[1.73 m]
−2
, the urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On cross-validation in derivation (
n
= 686), KidneyIntelX had an AUC of 0.77 (95% CI 0.74, 0.79). In validation (
n
= 460), the AUC was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and 0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO categorisation (
p
< 0.001). Only 10% of those scored as low risk by KidneyIntelX experienced progression (i.e., NPV of 90%). The NRI
event
for the high-risk group was 41% (
p
< 0.05).
Conclusions
KidneyIntelX improved prediction of kidney outcomes over KDIGO and clinical models in individuals with early stages of DKD.
Graphical abstract</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Cohort Studies</subject><subject>Creatinine</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic Nephropathies - diagnosis</subject><subject>Diabetic Nephropathies - epidemiology</subject><subject>Diabetic Nephropathies - pathology</subject><subject>Diabetic nephropathy</subject><subject>Disease Progression</subject><subject>Electronic health records</subject><subject>Electronic Health Records - statistics & numerical data</subject><subject>Electronic medical records</subject><subject>Epidermal growth factor receptors</subject><subject>Female</subject><subject>Glomerular Filtration Rate</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kidney diseases</subject><subject>Kidney Function Tests - statistics & numerical data</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Middle Aged</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Reclassification</subject><subject>Renal failure</subject><subject>Risk Factors</subject><subject>Risk groups</subject><subject>United States - epidemiology</subject><subject>Young Adult</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vEzEQhi1ERUPhD3BAlrhwWRjb69i5IKHyKVXqpZW4WV57NnWzsYO9G6n_hJ-L0w3l48BpNJ5n3pnxS8gLBm8YgHpbABiXDXDWgGzbtoFHZMFawRtouX5MFod6w_Ty2yl5WsotAAjZLp-QUyHUSsklLMiPD5jD3o4hRWqjp3s7BD-nqaeWbq27CRHpgDbHENc0h7KhxaWMdCqHhy6krc0bzPf9OKAbc4rB0V2VwTjSKmfpmOguow9urDGtM5ZynOGD7XCs_Cb4iHc1L2gLPiMnvR0KPj_GM3L96ePV-Zfm4vLz1_P3F42TLYxN61BZ3UvRaaZ71qm-537pGLPa9rYX9aMQmF8pvfKyVVwpQM-Fth6996oTZ-TdrLubui16VzfOdjC7HOpVdybZYP6uxHBj1mlv6jzFQVeB10eBnL5PWEazDcXhMNiIaSqGS9BS1dmyoq_-QW_TlGM9r1JCa7WSTFWKz5TLqZSM_cMyDMzBeDMbb6rx5t54A7Xp5Z9nPLT8croCYgZKLcU15t-z_yP7Ez7gvY0</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Chan, Lili</creator><creator>Nadkarni, Girish N.</creator><creator>Fleming, Fergus</creator><creator>McCullough, James R.</creator><creator>Connolly, Patricia</creator><creator>Mosoyan, Gohar</creator><creator>El Salem, Fadi</creator><creator>Kattan, Michael W.</creator><creator>Vassalotti, Joseph A.</creator><creator>Murphy, Barbara</creator><creator>Donovan, Michael J.</creator><creator>Coca, Steven G.</creator><creator>Damrauer, Scott M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8835-0192</orcidid><orcidid>https://orcid.org/0000-0001-6319-4314</orcidid><orcidid>https://orcid.org/0000-0002-3840-4161</orcidid><orcidid>https://orcid.org/0000-0002-5276-6652</orcidid><orcidid>https://orcid.org/0000-0003-4300-5760</orcidid><orcidid>https://orcid.org/0000-0001-6433-0584</orcidid><orcidid>https://orcid.org/0000-0002-2603-2778</orcidid><orcidid>https://orcid.org/0000-0002-0928-9168</orcidid><orcidid>https://orcid.org/0000-0002-9582-8630</orcidid><orcidid>https://orcid.org/0000-0003-0772-598X</orcidid><orcidid>https://orcid.org/0000-0001-8009-1632</orcidid></search><sort><creationdate>20210701</creationdate><title>Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease</title><author>Chan, Lili ; Nadkarni, Girish N. ; Fleming, Fergus ; McCullough, James R. ; Connolly, Patricia ; Mosoyan, Gohar ; El Salem, Fadi ; Kattan, Michael W. ; Vassalotti, Joseph A. ; Murphy, Barbara ; Donovan, Michael J. ; Coca, Steven G. ; Damrauer, Scott M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4ce7a8f53b818f1b7ff2d6c11a8afaf3100e01d9789d5472770ed238adeddd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Cohort Studies</topic><topic>Creatinine</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic Nephropathies - diagnosis</topic><topic>Diabetic Nephropathies - epidemiology</topic><topic>Diabetic Nephropathies - pathology</topic><topic>Diabetic nephropathy</topic><topic>Disease Progression</topic><topic>Electronic health records</topic><topic>Electronic Health Records - statistics & numerical data</topic><topic>Electronic medical records</topic><topic>Epidermal growth factor receptors</topic><topic>Female</topic><topic>Glomerular Filtration Rate</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kidney diseases</topic><topic>Kidney Function Tests - statistics & numerical data</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Middle Aged</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Reclassification</topic><topic>Renal failure</topic><topic>Risk Factors</topic><topic>Risk groups</topic><topic>United States - epidemiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Lili</creatorcontrib><creatorcontrib>Nadkarni, Girish N.</creatorcontrib><creatorcontrib>Fleming, Fergus</creatorcontrib><creatorcontrib>McCullough, James R.</creatorcontrib><creatorcontrib>Connolly, Patricia</creatorcontrib><creatorcontrib>Mosoyan, Gohar</creatorcontrib><creatorcontrib>El Salem, Fadi</creatorcontrib><creatorcontrib>Kattan, Michael W.</creatorcontrib><creatorcontrib>Vassalotti, Joseph A.</creatorcontrib><creatorcontrib>Murphy, Barbara</creatorcontrib><creatorcontrib>Donovan, Michael J.</creatorcontrib><creatorcontrib>Coca, Steven G.</creatorcontrib><creatorcontrib>Damrauer, Scott M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Lili</au><au>Nadkarni, Girish N.</au><au>Fleming, Fergus</au><au>McCullough, James R.</au><au>Connolly, Patricia</au><au>Mosoyan, Gohar</au><au>El Salem, Fadi</au><au>Kattan, Michael W.</au><au>Vassalotti, Joseph A.</au><au>Murphy, Barbara</au><au>Donovan, Michael J.</au><au>Coca, Steven G.</au><au>Damrauer, Scott M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>64</volume><issue>7</issue><spage>1504</spage><epage>1515</epage><pages>1504-1515</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aim
Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers.
Methods
This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years.
Results
In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min
−1
[1.73 m]
−2
, the urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On cross-validation in derivation (
n
= 686), KidneyIntelX had an AUC of 0.77 (95% CI 0.74, 0.79). In validation (
n
= 460), the AUC was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and 0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO categorisation (
p
< 0.001). Only 10% of those scored as low risk by KidneyIntelX experienced progression (i.e., NPV of 90%). The NRI
event
for the high-risk group was 41% (
p
< 0.05).
Conclusions
KidneyIntelX improved prediction of kidney outcomes over KDIGO and clinical models in individuals with early stages of DKD.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33797560</pmid><doi>10.1007/s00125-021-05444-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8835-0192</orcidid><orcidid>https://orcid.org/0000-0001-6319-4314</orcidid><orcidid>https://orcid.org/0000-0002-3840-4161</orcidid><orcidid>https://orcid.org/0000-0002-5276-6652</orcidid><orcidid>https://orcid.org/0000-0003-4300-5760</orcidid><orcidid>https://orcid.org/0000-0001-6433-0584</orcidid><orcidid>https://orcid.org/0000-0002-2603-2778</orcidid><orcidid>https://orcid.org/0000-0002-0928-9168</orcidid><orcidid>https://orcid.org/0000-0002-9582-8630</orcidid><orcidid>https://orcid.org/0000-0003-0772-598X</orcidid><orcidid>https://orcid.org/0000-0001-8009-1632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-186X |
ispartof | Diabetologia, 2021-07, Vol.64 (7), p.1504-1515 |
issn | 0012-186X 1432-0428 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187208 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adult Aged Aged, 80 and over Biomarkers Biomarkers - analysis Cohort Studies Creatinine Diabetes Diabetes mellitus Diabetic Nephropathies - diagnosis Diabetic Nephropathies - epidemiology Diabetic Nephropathies - pathology Diabetic nephropathy Disease Progression Electronic health records Electronic Health Records - statistics & numerical data Electronic medical records Epidermal growth factor receptors Female Glomerular Filtration Rate Human Physiology Humans Internal Medicine Kidney diseases Kidney Function Tests - statistics & numerical data Learning algorithms Machine Learning Male Medicine Medicine & Public Health Metabolic Diseases Middle Aged Predictive Value of Tests Prognosis Reclassification Renal failure Risk Factors Risk groups United States - epidemiology Young Adult |
title | Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20validation%20of%20a%20machine%20learning%20risk%20score%20using%20biomarker%20and%20electronic%20patient%20data%20to%20predict%20progression%20of%20diabetic%20kidney%20disease&rft.jtitle=Diabetologia&rft.au=Chan,%20Lili&rft.date=2021-07-01&rft.volume=64&rft.issue=7&rft.spage=1504&rft.epage=1515&rft.pages=1504-1515&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-021-05444-0&rft_dat=%3Cproquest_pubme%3E2508575475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538879517&rft_id=info:pmid/33797560&rfr_iscdi=true |