Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization

The prediction of the spread of coronavirus disease 2019 (COVID-19) is vital in taking preventive and control measures to reduce human health damage. The Grey Modelling (1,1) is a popular approach used to construct a predictive model with a small-sized dataset.​ In this study, a hybrid model based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing 2021-09, Vol.109, p.107592-107592, Article 107592
1. Verfasser: Ceylan, Zeynep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107592
container_issue
container_start_page 107592
container_title Applied soft computing
container_volume 109
creator Ceylan, Zeynep
description The prediction of the spread of coronavirus disease 2019 (COVID-19) is vital in taking preventive and control measures to reduce human health damage. The Grey Modelling (1,1) is a popular approach used to construct a predictive model with a small-sized dataset.​ In this study, a hybrid model based on grey prediction and rolling mechanism optimized by particle swarm optimization algorithm (PSO) was applied to create short-term estimates of the total number of confirmed COVID-19 cases for three countries, Germany, Turkey, and the USA. A rolling mechanism that updates data in equal dimensions was applied to improve the forecasting accuracy of the models. The PSO algorithm was used to optimize the Grey Modelling parameters (1,1) to provide more robust and efficient solutions with minimum errors. To compare the accuracy of the predictive models, a nonlinear autoregressive neural network (NARNN) was also developed. According to the analysis results, Grey Rolling Modelling (1,1) optimized by PSO algorithm performs better than the classical Grey Modelling (1,1), Grey Rolling Modelling (1,1), and NARNN models for predicting the total number of confirmed COVID-19 cases. The present study can provide an important basis for countries to allocate health resources and formulate epidemic prevention policies effectively.
doi_str_mv 10.1016/j.asoc.2021.107592
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8186943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494621005135</els_id><sourcerecordid>2540722499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-6b831a8987e158c2ef89468e494ee5db727344c4b9b0eca3aabd8f040cf90ce13</originalsourceid><addsrcrecordid>eNp9kV9v2yAUxdHUaWmzfYE9TDz2xSlgbIM0Vaqy9Y9UqQ9r94owvk6IbOMBSZV--mIlq7qXPQH3nvODy0HoKyULSmh5sVno4MyCEUZToSok-4BOqahYJktBT9K-KEXGJS9n6CyEDUkmycQnNMs5ZVSWxSna_Fo7H7MIvsejh8aaaN2AXYuXD7_vfmRU4pDqusHbYIcVXnnYY--6bjr0roEOuzHa3r5Ag-s9HrWP1nSAw7NOyGNPT9DP6GOruwBfjuscPV3_fFzeZvcPN3fLq_vM8KKIWVmLnGohRQW0EIZBK9IEAtIcAEVTV6zKOTe8ljUBo3Ot60a0hBPTSmKA5nN0eeCO27qHxsAQve7U6G2v_V45bdW_ncGu1crtlKCilDxPgPMjwLs_WwhR9TYY6Do9gNsGxQpOKsa4lEnKDlLjXQge2rdrKFFTSGqjppDUFJI6hJRM394_8M3yN5Uk-H4QQPqmnQWvgrEwmBSPBxNV4-z_-K9CVqXG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540722499</pqid></control><display><type>article</type><title>Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ceylan, Zeynep</creator><creatorcontrib>Ceylan, Zeynep</creatorcontrib><description>The prediction of the spread of coronavirus disease 2019 (COVID-19) is vital in taking preventive and control measures to reduce human health damage. The Grey Modelling (1,1) is a popular approach used to construct a predictive model with a small-sized dataset.​ In this study, a hybrid model based on grey prediction and rolling mechanism optimized by particle swarm optimization algorithm (PSO) was applied to create short-term estimates of the total number of confirmed COVID-19 cases for three countries, Germany, Turkey, and the USA. A rolling mechanism that updates data in equal dimensions was applied to improve the forecasting accuracy of the models. The PSO algorithm was used to optimize the Grey Modelling parameters (1,1) to provide more robust and efficient solutions with minimum errors. To compare the accuracy of the predictive models, a nonlinear autoregressive neural network (NARNN) was also developed. According to the analysis results, Grey Rolling Modelling (1,1) optimized by PSO algorithm performs better than the classical Grey Modelling (1,1), Grey Rolling Modelling (1,1), and NARNN models for predicting the total number of confirmed COVID-19 cases. The present study can provide an important basis for countries to allocate health resources and formulate epidemic prevention policies effectively.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2021.107592</identifier><identifier>PMID: 34121965</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>COVID-19 ; Grey modelling (1,1) ; NARNN ; Particle swarm optimization ; Prediction ; Rolling mechanism</subject><ispartof>Applied soft computing, 2021-09, Vol.109, p.107592-107592, Article 107592</ispartof><rights>2021 Elsevier B.V.</rights><rights>2021 Elsevier B.V. All rights reserved.</rights><rights>2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-6b831a8987e158c2ef89468e494ee5db727344c4b9b0eca3aabd8f040cf90ce13</citedby><cites>FETCH-LOGICAL-c455t-6b831a8987e158c2ef89468e494ee5db727344c4b9b0eca3aabd8f040cf90ce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asoc.2021.107592$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34121965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ceylan, Zeynep</creatorcontrib><title>Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization</title><title>Applied soft computing</title><addtitle>Appl Soft Comput</addtitle><description>The prediction of the spread of coronavirus disease 2019 (COVID-19) is vital in taking preventive and control measures to reduce human health damage. The Grey Modelling (1,1) is a popular approach used to construct a predictive model with a small-sized dataset.​ In this study, a hybrid model based on grey prediction and rolling mechanism optimized by particle swarm optimization algorithm (PSO) was applied to create short-term estimates of the total number of confirmed COVID-19 cases for three countries, Germany, Turkey, and the USA. A rolling mechanism that updates data in equal dimensions was applied to improve the forecasting accuracy of the models. The PSO algorithm was used to optimize the Grey Modelling parameters (1,1) to provide more robust and efficient solutions with minimum errors. To compare the accuracy of the predictive models, a nonlinear autoregressive neural network (NARNN) was also developed. According to the analysis results, Grey Rolling Modelling (1,1) optimized by PSO algorithm performs better than the classical Grey Modelling (1,1), Grey Rolling Modelling (1,1), and NARNN models for predicting the total number of confirmed COVID-19 cases. The present study can provide an important basis for countries to allocate health resources and formulate epidemic prevention policies effectively.</description><subject>COVID-19</subject><subject>Grey modelling (1,1)</subject><subject>NARNN</subject><subject>Particle swarm optimization</subject><subject>Prediction</subject><subject>Rolling mechanism</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV9v2yAUxdHUaWmzfYE9TDz2xSlgbIM0Vaqy9Y9UqQ9r94owvk6IbOMBSZV--mIlq7qXPQH3nvODy0HoKyULSmh5sVno4MyCEUZToSok-4BOqahYJktBT9K-KEXGJS9n6CyEDUkmycQnNMs5ZVSWxSna_Fo7H7MIvsejh8aaaN2AXYuXD7_vfmRU4pDqusHbYIcVXnnYY--6bjr0roEOuzHa3r5Ag-s9HrWP1nSAw7NOyGNPT9DP6GOruwBfjuscPV3_fFzeZvcPN3fLq_vM8KKIWVmLnGohRQW0EIZBK9IEAtIcAEVTV6zKOTe8ljUBo3Ot60a0hBPTSmKA5nN0eeCO27qHxsAQve7U6G2v_V45bdW_ncGu1crtlKCilDxPgPMjwLs_WwhR9TYY6Do9gNsGxQpOKsa4lEnKDlLjXQge2rdrKFFTSGqjppDUFJI6hJRM394_8M3yN5Uk-H4QQPqmnQWvgrEwmBSPBxNV4-z_-K9CVqXG</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ceylan, Zeynep</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210901</creationdate><title>Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization</title><author>Ceylan, Zeynep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-6b831a8987e158c2ef89468e494ee5db727344c4b9b0eca3aabd8f040cf90ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>COVID-19</topic><topic>Grey modelling (1,1)</topic><topic>NARNN</topic><topic>Particle swarm optimization</topic><topic>Prediction</topic><topic>Rolling mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceylan, Zeynep</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceylan, Zeynep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization</atitle><jtitle>Applied soft computing</jtitle><addtitle>Appl Soft Comput</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>109</volume><spage>107592</spage><epage>107592</epage><pages>107592-107592</pages><artnum>107592</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>The prediction of the spread of coronavirus disease 2019 (COVID-19) is vital in taking preventive and control measures to reduce human health damage. The Grey Modelling (1,1) is a popular approach used to construct a predictive model with a small-sized dataset.​ In this study, a hybrid model based on grey prediction and rolling mechanism optimized by particle swarm optimization algorithm (PSO) was applied to create short-term estimates of the total number of confirmed COVID-19 cases for three countries, Germany, Turkey, and the USA. A rolling mechanism that updates data in equal dimensions was applied to improve the forecasting accuracy of the models. The PSO algorithm was used to optimize the Grey Modelling parameters (1,1) to provide more robust and efficient solutions with minimum errors. To compare the accuracy of the predictive models, a nonlinear autoregressive neural network (NARNN) was also developed. According to the analysis results, Grey Rolling Modelling (1,1) optimized by PSO algorithm performs better than the classical Grey Modelling (1,1), Grey Rolling Modelling (1,1), and NARNN models for predicting the total number of confirmed COVID-19 cases. The present study can provide an important basis for countries to allocate health resources and formulate epidemic prevention policies effectively.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><pmid>34121965</pmid><doi>10.1016/j.asoc.2021.107592</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2021-09, Vol.109, p.107592-107592, Article 107592
issn 1568-4946
1872-9681
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8186943
source Access via ScienceDirect (Elsevier)
subjects COVID-19
Grey modelling (1,1)
NARNN
Particle swarm optimization
Prediction
Rolling mechanism
title Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20prediction%20of%20COVID-19%20spread%20using%20grey%20rolling%20model%20optimized%20by%20particle%20swarm%20optimization&rft.jtitle=Applied%20soft%20computing&rft.au=Ceylan,%20Zeynep&rft.date=2021-09-01&rft.volume=109&rft.spage=107592&rft.epage=107592&rft.pages=107592-107592&rft.artnum=107592&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2021.107592&rft_dat=%3Cproquest_pubme%3E2540722499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540722499&rft_id=info:pmid/34121965&rft_els_id=S1568494621005135&rfr_iscdi=true