SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2
In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio...
Gespeichert in:
Veröffentlicht in: | Cell 2021-07, Vol.184 (15), p.3936-3948.e10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3948.e10 |
---|---|
container_issue | 15 |
container_start_page | 3936 |
container_title | Cell |
container_volume | 184 |
creator | Amanat, Fatima Thapa, Mahima Lei, Tinting Ahmed, Shaza M. Sayed Adelsberg, Daniel C. Carreño, Juan Manuel Strohmeier, Shirin Schmitz, Aaron J. Zafar, Sarah Zhou, Julian Q. Rijnink, Willemijn Alshammary, Hala Borcherding, Nicholas Reiche, Ana Gonzalez Srivastava, Komal Sordillo, Emilia Mia van Bakel, Harm Ahmed, Bulbul Altman, Deena Amoako, Angela Awawda, Mahmoud Beach, Katherine Bermúdez-González, Carolina Chernet, Rachel Eaker, Lily Fabre, Shelcie Ferreri, Emily D. Floda, Daniel Gleason, Charles Kleiner, Giulio Jurczyszak, Denise Matthews, Julia Mendez, Wanni Mulder, Lubbertus C.F. Polanco, Jose Russo, Kayla Salimbangon, Ashley Saksena, Miti Shin, Amber S. Sominsky, Levy Suthakaran, Sayahi Wajnberg, Ania Turner, Jackson S. Bajic, Goran Simon, Viviana Ellebedy, Ali H. Krammer, Florian |
description | In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
[Display omitted]
•Antibody responses after SARS-CoV-2 mRNA vaccination target RBD, NTD, and S2•SARS-CoV-2 mRNA vaccination induces a high rate of non-neutralizing antibodies•Crossreactive antibodies to seasonal β-coronaviruses are induced by vaccination•Variant mutation N501Y enhances affinity to human ACE2 while E484K reduces it
An analysis of mRNA vaccine-induced polyclonal antibodies and plasmablast-derived monoclonal antibodies from individuals vaccinated against SARS-CoV-2 identifies a high proportion of non-neutralizing antibodies and the induction of cross-reactive antibodies to seasonal coronaviruses and also maps the regions in the spike protein that are targeted, even among viral variants. |
doi_str_mv | 10.1016/j.cell.2021.06.005 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8185186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867421007066</els_id><sourcerecordid>34192529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-98ec20be2112e4ce20bdf98502afcd72b26c7539aaacc82c39cc44a2c7e6406e3</originalsourceid><addsrcrecordid>eNp9kN1OGzEQha0KVAL0BbhAfgB2GU_W-yMhpBAKrRQFKaHtpeWMZ1tHGy_a3UTi7esoLWpvuPFYPnPOeD4hLhSkClR-vU6JmyZFQJVCngLoD2KkoCqSTBV4JEYAFSZlXmQn4rTv1wBQaq0_ipNxpirUWI3Ej-VksUym7fcE5WYxn8idJfLBDr4N0ge3Je5lvQ20f7BN8yqd33HXs7Rh8KvW-agPrZw_31_JxV08bHByiefiuLZNz5_-1DPx7eHz8_RLMnt6_DqdzBLKtB6SqmRCWDEqhZwRx7urq1ID2ppcgSvMqdDjytr4rRJpXBFlmUUqOM8g5_GZuD3kvmxXG3bEYehsY146v7Hdq2mtN_8rwf8yP9udKVWpVZnHADwEUNf2fcf1m1eB2WM2a7PHbPaYDeQmYo6my3-nvln-co0NN4cGjrvvPHemJ8-B2PmOaTCu9e_l_wZw6463</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2</title><source>Electronic Journals Library</source><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Amanat, Fatima ; Thapa, Mahima ; Lei, Tinting ; Ahmed, Shaza M. Sayed ; Adelsberg, Daniel C. ; Carreño, Juan Manuel ; Strohmeier, Shirin ; Schmitz, Aaron J. ; Zafar, Sarah ; Zhou, Julian Q. ; Rijnink, Willemijn ; Alshammary, Hala ; Borcherding, Nicholas ; Reiche, Ana Gonzalez ; Srivastava, Komal ; Sordillo, Emilia Mia ; van Bakel, Harm ; Ahmed, Bulbul ; Altman, Deena ; Amoako, Angela ; Awawda, Mahmoud ; Beach, Katherine ; Bermúdez-González, Carolina ; Chernet, Rachel ; Eaker, Lily ; Fabre, Shelcie ; Ferreri, Emily D. ; Floda, Daniel ; Gleason, Charles ; Kleiner, Giulio ; Jurczyszak, Denise ; Matthews, Julia ; Mendez, Wanni ; Mulder, Lubbertus C.F. ; Polanco, Jose ; Russo, Kayla ; Salimbangon, Ashley ; Saksena, Miti ; Shin, Amber S. ; Sominsky, Levy ; Suthakaran, Sayahi ; Wajnberg, Ania ; Turner, Jackson S. ; Bajic, Goran ; Simon, Viviana ; Ellebedy, Ali H. ; Krammer, Florian</creator><creatorcontrib>Amanat, Fatima ; Thapa, Mahima ; Lei, Tinting ; Ahmed, Shaza M. Sayed ; Adelsberg, Daniel C. ; Carreño, Juan Manuel ; Strohmeier, Shirin ; Schmitz, Aaron J. ; Zafar, Sarah ; Zhou, Julian Q. ; Rijnink, Willemijn ; Alshammary, Hala ; Borcherding, Nicholas ; Reiche, Ana Gonzalez ; Srivastava, Komal ; Sordillo, Emilia Mia ; van Bakel, Harm ; Ahmed, Bulbul ; Altman, Deena ; Amoako, Angela ; Awawda, Mahmoud ; Beach, Katherine ; Bermúdez-González, Carolina ; Chernet, Rachel ; Eaker, Lily ; Fabre, Shelcie ; Ferreri, Emily D. ; Floda, Daniel ; Gleason, Charles ; Kleiner, Giulio ; Jurczyszak, Denise ; Matthews, Julia ; Mendez, Wanni ; Mulder, Lubbertus C.F. ; Polanco, Jose ; Russo, Kayla ; Salimbangon, Ashley ; Saksena, Miti ; Shin, Amber S. ; Sominsky, Levy ; Suthakaran, Sayahi ; Wajnberg, Ania ; Turner, Jackson S. ; Bajic, Goran ; Simon, Viviana ; Ellebedy, Ali H. ; Krammer, Florian ; The Personalized Virology Initiative ; Personalized Virology Initiative</creatorcontrib><description>In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
[Display omitted]
•Antibody responses after SARS-CoV-2 mRNA vaccination target RBD, NTD, and S2•SARS-CoV-2 mRNA vaccination induces a high rate of non-neutralizing antibodies•Crossreactive antibodies to seasonal β-coronaviruses are induced by vaccination•Variant mutation N501Y enhances affinity to human ACE2 while E484K reduces it
An analysis of mRNA vaccine-induced polyclonal antibodies and plasmablast-derived monoclonal antibodies from individuals vaccinated against SARS-CoV-2 identifies a high proportion of non-neutralizing antibodies and the induction of cross-reactive antibodies to seasonal coronaviruses and also maps the regions in the spike protein that are targeted, even among viral variants.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2021.06.005</identifier><identifier>PMID: 34192529</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Angiotensin-Converting Enzyme 2 - immunology ; Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - isolation & purification ; Antibodies, Neutralizing - immunology ; Antibodies, Viral - immunology ; Antibody Formation - immunology ; Binding, Competitive ; COVID-19 Vaccines - immunology ; Humans ; Immunoglobulin G - metabolism ; mAbs ; mRNA vaccination ; Mutation - genetics ; NTD ; plasmablasts ; Protein Domains ; RBD ; RNA, Messenger - immunology ; SARS-CoV-2 ; SARS-CoV-2 - immunology ; Somatic Hypermutation, Immunoglobulin - genetics ; spike ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - immunology ; Vaccination</subject><ispartof>Cell, 2021-07, Vol.184 (15), p.3936-3948.e10</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>2021 Elsevier Inc. 2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-98ec20be2112e4ce20bdf98502afcd72b26c7539aaacc82c39cc44a2c7e6406e3</citedby><cites>FETCH-LOGICAL-c455t-98ec20be2112e4ce20bdf98502afcd72b26c7539aaacc82c39cc44a2c7e6406e3</cites><orcidid>0000-0003-0480-4324 ; 0000-0003-3151-3725 ; 0000-0002-8029-8227 ; 0000-0002-8077-6751 ; 0000-0003-3583-4497 ; 0000-0001-9602-2092 ; 0000-0003-0591-7136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867421007066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34192529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amanat, Fatima</creatorcontrib><creatorcontrib>Thapa, Mahima</creatorcontrib><creatorcontrib>Lei, Tinting</creatorcontrib><creatorcontrib>Ahmed, Shaza M. Sayed</creatorcontrib><creatorcontrib>Adelsberg, Daniel C.</creatorcontrib><creatorcontrib>Carreño, Juan Manuel</creatorcontrib><creatorcontrib>Strohmeier, Shirin</creatorcontrib><creatorcontrib>Schmitz, Aaron J.</creatorcontrib><creatorcontrib>Zafar, Sarah</creatorcontrib><creatorcontrib>Zhou, Julian Q.</creatorcontrib><creatorcontrib>Rijnink, Willemijn</creatorcontrib><creatorcontrib>Alshammary, Hala</creatorcontrib><creatorcontrib>Borcherding, Nicholas</creatorcontrib><creatorcontrib>Reiche, Ana Gonzalez</creatorcontrib><creatorcontrib>Srivastava, Komal</creatorcontrib><creatorcontrib>Sordillo, Emilia Mia</creatorcontrib><creatorcontrib>van Bakel, Harm</creatorcontrib><creatorcontrib>Ahmed, Bulbul</creatorcontrib><creatorcontrib>Altman, Deena</creatorcontrib><creatorcontrib>Amoako, Angela</creatorcontrib><creatorcontrib>Awawda, Mahmoud</creatorcontrib><creatorcontrib>Beach, Katherine</creatorcontrib><creatorcontrib>Bermúdez-González, Carolina</creatorcontrib><creatorcontrib>Chernet, Rachel</creatorcontrib><creatorcontrib>Eaker, Lily</creatorcontrib><creatorcontrib>Fabre, Shelcie</creatorcontrib><creatorcontrib>Ferreri, Emily D.</creatorcontrib><creatorcontrib>Floda, Daniel</creatorcontrib><creatorcontrib>Gleason, Charles</creatorcontrib><creatorcontrib>Kleiner, Giulio</creatorcontrib><creatorcontrib>Jurczyszak, Denise</creatorcontrib><creatorcontrib>Matthews, Julia</creatorcontrib><creatorcontrib>Mendez, Wanni</creatorcontrib><creatorcontrib>Mulder, Lubbertus C.F.</creatorcontrib><creatorcontrib>Polanco, Jose</creatorcontrib><creatorcontrib>Russo, Kayla</creatorcontrib><creatorcontrib>Salimbangon, Ashley</creatorcontrib><creatorcontrib>Saksena, Miti</creatorcontrib><creatorcontrib>Shin, Amber S.</creatorcontrib><creatorcontrib>Sominsky, Levy</creatorcontrib><creatorcontrib>Suthakaran, Sayahi</creatorcontrib><creatorcontrib>Wajnberg, Ania</creatorcontrib><creatorcontrib>Turner, Jackson S.</creatorcontrib><creatorcontrib>Bajic, Goran</creatorcontrib><creatorcontrib>Simon, Viviana</creatorcontrib><creatorcontrib>Ellebedy, Ali H.</creatorcontrib><creatorcontrib>Krammer, Florian</creatorcontrib><creatorcontrib>The Personalized Virology Initiative</creatorcontrib><creatorcontrib>Personalized Virology Initiative</creatorcontrib><title>SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2</title><title>Cell</title><addtitle>Cell</addtitle><description>In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
[Display omitted]
•Antibody responses after SARS-CoV-2 mRNA vaccination target RBD, NTD, and S2•SARS-CoV-2 mRNA vaccination induces a high rate of non-neutralizing antibodies•Crossreactive antibodies to seasonal β-coronaviruses are induced by vaccination•Variant mutation N501Y enhances affinity to human ACE2 while E484K reduces it
An analysis of mRNA vaccine-induced polyclonal antibodies and plasmablast-derived monoclonal antibodies from individuals vaccinated against SARS-CoV-2 identifies a high proportion of non-neutralizing antibodies and the induction of cross-reactive antibodies to seasonal coronaviruses and also maps the regions in the spike protein that are targeted, even among viral variants.</description><subject>Amino Acid Substitution</subject><subject>Angiotensin-Converting Enzyme 2 - immunology</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - isolation & purification</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Antibodies, Viral - immunology</subject><subject>Antibody Formation - immunology</subject><subject>Binding, Competitive</subject><subject>COVID-19 Vaccines - immunology</subject><subject>Humans</subject><subject>Immunoglobulin G - metabolism</subject><subject>mAbs</subject><subject>mRNA vaccination</subject><subject>Mutation - genetics</subject><subject>NTD</subject><subject>plasmablasts</subject><subject>Protein Domains</subject><subject>RBD</subject><subject>RNA, Messenger - immunology</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - immunology</subject><subject>Somatic Hypermutation, Immunoglobulin - genetics</subject><subject>spike</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - immunology</subject><subject>Vaccination</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1OGzEQha0KVAL0BbhAfgB2GU_W-yMhpBAKrRQFKaHtpeWMZ1tHGy_a3UTi7esoLWpvuPFYPnPOeD4hLhSkClR-vU6JmyZFQJVCngLoD2KkoCqSTBV4JEYAFSZlXmQn4rTv1wBQaq0_ipNxpirUWI3Ej-VksUym7fcE5WYxn8idJfLBDr4N0ge3Je5lvQ20f7BN8yqd33HXs7Rh8KvW-agPrZw_31_JxV08bHByiefiuLZNz5_-1DPx7eHz8_RLMnt6_DqdzBLKtB6SqmRCWDEqhZwRx7urq1ID2ppcgSvMqdDjytr4rRJpXBFlmUUqOM8g5_GZuD3kvmxXG3bEYehsY146v7Hdq2mtN_8rwf8yP9udKVWpVZnHADwEUNf2fcf1m1eB2WM2a7PHbPaYDeQmYo6my3-nvln-co0NN4cGjrvvPHemJ8-B2PmOaTCu9e_l_wZw6463</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Amanat, Fatima</creator><creator>Thapa, Mahima</creator><creator>Lei, Tinting</creator><creator>Ahmed, Shaza M. Sayed</creator><creator>Adelsberg, Daniel C.</creator><creator>Carreño, Juan Manuel</creator><creator>Strohmeier, Shirin</creator><creator>Schmitz, Aaron J.</creator><creator>Zafar, Sarah</creator><creator>Zhou, Julian Q.</creator><creator>Rijnink, Willemijn</creator><creator>Alshammary, Hala</creator><creator>Borcherding, Nicholas</creator><creator>Reiche, Ana Gonzalez</creator><creator>Srivastava, Komal</creator><creator>Sordillo, Emilia Mia</creator><creator>van Bakel, Harm</creator><creator>Ahmed, Bulbul</creator><creator>Altman, Deena</creator><creator>Amoako, Angela</creator><creator>Awawda, Mahmoud</creator><creator>Beach, Katherine</creator><creator>Bermúdez-González, Carolina</creator><creator>Chernet, Rachel</creator><creator>Eaker, Lily</creator><creator>Fabre, Shelcie</creator><creator>Ferreri, Emily D.</creator><creator>Floda, Daniel</creator><creator>Gleason, Charles</creator><creator>Kleiner, Giulio</creator><creator>Jurczyszak, Denise</creator><creator>Matthews, Julia</creator><creator>Mendez, Wanni</creator><creator>Mulder, Lubbertus C.F.</creator><creator>Polanco, Jose</creator><creator>Russo, Kayla</creator><creator>Salimbangon, Ashley</creator><creator>Saksena, Miti</creator><creator>Shin, Amber S.</creator><creator>Sominsky, Levy</creator><creator>Suthakaran, Sayahi</creator><creator>Wajnberg, Ania</creator><creator>Turner, Jackson S.</creator><creator>Bajic, Goran</creator><creator>Simon, Viviana</creator><creator>Ellebedy, Ali H.</creator><creator>Krammer, Florian</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0480-4324</orcidid><orcidid>https://orcid.org/0000-0003-3151-3725</orcidid><orcidid>https://orcid.org/0000-0002-8029-8227</orcidid><orcidid>https://orcid.org/0000-0002-8077-6751</orcidid><orcidid>https://orcid.org/0000-0003-3583-4497</orcidid><orcidid>https://orcid.org/0000-0001-9602-2092</orcidid><orcidid>https://orcid.org/0000-0003-0591-7136</orcidid></search><sort><creationdate>20210722</creationdate><title>SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2</title><author>Amanat, Fatima ; Thapa, Mahima ; Lei, Tinting ; Ahmed, Shaza M. Sayed ; Adelsberg, Daniel C. ; Carreño, Juan Manuel ; Strohmeier, Shirin ; Schmitz, Aaron J. ; Zafar, Sarah ; Zhou, Julian Q. ; Rijnink, Willemijn ; Alshammary, Hala ; Borcherding, Nicholas ; Reiche, Ana Gonzalez ; Srivastava, Komal ; Sordillo, Emilia Mia ; van Bakel, Harm ; Ahmed, Bulbul ; Altman, Deena ; Amoako, Angela ; Awawda, Mahmoud ; Beach, Katherine ; Bermúdez-González, Carolina ; Chernet, Rachel ; Eaker, Lily ; Fabre, Shelcie ; Ferreri, Emily D. ; Floda, Daniel ; Gleason, Charles ; Kleiner, Giulio ; Jurczyszak, Denise ; Matthews, Julia ; Mendez, Wanni ; Mulder, Lubbertus C.F. ; Polanco, Jose ; Russo, Kayla ; Salimbangon, Ashley ; Saksena, Miti ; Shin, Amber S. ; Sominsky, Levy ; Suthakaran, Sayahi ; Wajnberg, Ania ; Turner, Jackson S. ; Bajic, Goran ; Simon, Viviana ; Ellebedy, Ali H. ; Krammer, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-98ec20be2112e4ce20bdf98502afcd72b26c7539aaacc82c39cc44a2c7e6406e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Substitution</topic><topic>Angiotensin-Converting Enzyme 2 - immunology</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - isolation & purification</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Antibodies, Viral - immunology</topic><topic>Antibody Formation - immunology</topic><topic>Binding, Competitive</topic><topic>COVID-19 Vaccines - immunology</topic><topic>Humans</topic><topic>Immunoglobulin G - metabolism</topic><topic>mAbs</topic><topic>mRNA vaccination</topic><topic>Mutation - genetics</topic><topic>NTD</topic><topic>plasmablasts</topic><topic>Protein Domains</topic><topic>RBD</topic><topic>RNA, Messenger - immunology</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - immunology</topic><topic>Somatic Hypermutation, Immunoglobulin - genetics</topic><topic>spike</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - immunology</topic><topic>Vaccination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amanat, Fatima</creatorcontrib><creatorcontrib>Thapa, Mahima</creatorcontrib><creatorcontrib>Lei, Tinting</creatorcontrib><creatorcontrib>Ahmed, Shaza M. Sayed</creatorcontrib><creatorcontrib>Adelsberg, Daniel C.</creatorcontrib><creatorcontrib>Carreño, Juan Manuel</creatorcontrib><creatorcontrib>Strohmeier, Shirin</creatorcontrib><creatorcontrib>Schmitz, Aaron J.</creatorcontrib><creatorcontrib>Zafar, Sarah</creatorcontrib><creatorcontrib>Zhou, Julian Q.</creatorcontrib><creatorcontrib>Rijnink, Willemijn</creatorcontrib><creatorcontrib>Alshammary, Hala</creatorcontrib><creatorcontrib>Borcherding, Nicholas</creatorcontrib><creatorcontrib>Reiche, Ana Gonzalez</creatorcontrib><creatorcontrib>Srivastava, Komal</creatorcontrib><creatorcontrib>Sordillo, Emilia Mia</creatorcontrib><creatorcontrib>van Bakel, Harm</creatorcontrib><creatorcontrib>Ahmed, Bulbul</creatorcontrib><creatorcontrib>Altman, Deena</creatorcontrib><creatorcontrib>Amoako, Angela</creatorcontrib><creatorcontrib>Awawda, Mahmoud</creatorcontrib><creatorcontrib>Beach, Katherine</creatorcontrib><creatorcontrib>Bermúdez-González, Carolina</creatorcontrib><creatorcontrib>Chernet, Rachel</creatorcontrib><creatorcontrib>Eaker, Lily</creatorcontrib><creatorcontrib>Fabre, Shelcie</creatorcontrib><creatorcontrib>Ferreri, Emily D.</creatorcontrib><creatorcontrib>Floda, Daniel</creatorcontrib><creatorcontrib>Gleason, Charles</creatorcontrib><creatorcontrib>Kleiner, Giulio</creatorcontrib><creatorcontrib>Jurczyszak, Denise</creatorcontrib><creatorcontrib>Matthews, Julia</creatorcontrib><creatorcontrib>Mendez, Wanni</creatorcontrib><creatorcontrib>Mulder, Lubbertus C.F.</creatorcontrib><creatorcontrib>Polanco, Jose</creatorcontrib><creatorcontrib>Russo, Kayla</creatorcontrib><creatorcontrib>Salimbangon, Ashley</creatorcontrib><creatorcontrib>Saksena, Miti</creatorcontrib><creatorcontrib>Shin, Amber S.</creatorcontrib><creatorcontrib>Sominsky, Levy</creatorcontrib><creatorcontrib>Suthakaran, Sayahi</creatorcontrib><creatorcontrib>Wajnberg, Ania</creatorcontrib><creatorcontrib>Turner, Jackson S.</creatorcontrib><creatorcontrib>Bajic, Goran</creatorcontrib><creatorcontrib>Simon, Viviana</creatorcontrib><creatorcontrib>Ellebedy, Ali H.</creatorcontrib><creatorcontrib>Krammer, Florian</creatorcontrib><creatorcontrib>The Personalized Virology Initiative</creatorcontrib><creatorcontrib>Personalized Virology Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amanat, Fatima</au><au>Thapa, Mahima</au><au>Lei, Tinting</au><au>Ahmed, Shaza M. Sayed</au><au>Adelsberg, Daniel C.</au><au>Carreño, Juan Manuel</au><au>Strohmeier, Shirin</au><au>Schmitz, Aaron J.</au><au>Zafar, Sarah</au><au>Zhou, Julian Q.</au><au>Rijnink, Willemijn</au><au>Alshammary, Hala</au><au>Borcherding, Nicholas</au><au>Reiche, Ana Gonzalez</au><au>Srivastava, Komal</au><au>Sordillo, Emilia Mia</au><au>van Bakel, Harm</au><au>Ahmed, Bulbul</au><au>Altman, Deena</au><au>Amoako, Angela</au><au>Awawda, Mahmoud</au><au>Beach, Katherine</au><au>Bermúdez-González, Carolina</au><au>Chernet, Rachel</au><au>Eaker, Lily</au><au>Fabre, Shelcie</au><au>Ferreri, Emily D.</au><au>Floda, Daniel</au><au>Gleason, Charles</au><au>Kleiner, Giulio</au><au>Jurczyszak, Denise</au><au>Matthews, Julia</au><au>Mendez, Wanni</au><au>Mulder, Lubbertus C.F.</au><au>Polanco, Jose</au><au>Russo, Kayla</au><au>Salimbangon, Ashley</au><au>Saksena, Miti</au><au>Shin, Amber S.</au><au>Sominsky, Levy</au><au>Suthakaran, Sayahi</au><au>Wajnberg, Ania</au><au>Turner, Jackson S.</au><au>Bajic, Goran</au><au>Simon, Viviana</au><au>Ellebedy, Ali H.</au><au>Krammer, Florian</au><aucorp>The Personalized Virology Initiative</aucorp><aucorp>Personalized Virology Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-07-22</date><risdate>2021</risdate><volume>184</volume><issue>15</issue><spage>3936</spage><epage>3948.e10</epage><pages>3936-3948.e10</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
[Display omitted]
•Antibody responses after SARS-CoV-2 mRNA vaccination target RBD, NTD, and S2•SARS-CoV-2 mRNA vaccination induces a high rate of non-neutralizing antibodies•Crossreactive antibodies to seasonal β-coronaviruses are induced by vaccination•Variant mutation N501Y enhances affinity to human ACE2 while E484K reduces it
An analysis of mRNA vaccine-induced polyclonal antibodies and plasmablast-derived monoclonal antibodies from individuals vaccinated against SARS-CoV-2 identifies a high proportion of non-neutralizing antibodies and the induction of cross-reactive antibodies to seasonal coronaviruses and also maps the regions in the spike protein that are targeted, even among viral variants.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34192529</pmid><doi>10.1016/j.cell.2021.06.005</doi><orcidid>https://orcid.org/0000-0003-0480-4324</orcidid><orcidid>https://orcid.org/0000-0003-3151-3725</orcidid><orcidid>https://orcid.org/0000-0002-8029-8227</orcidid><orcidid>https://orcid.org/0000-0002-8077-6751</orcidid><orcidid>https://orcid.org/0000-0003-3583-4497</orcidid><orcidid>https://orcid.org/0000-0001-9602-2092</orcidid><orcidid>https://orcid.org/0000-0003-0591-7136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2021-07, Vol.184 (15), p.3936-3948.e10 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8185186 |
source | Electronic Journals Library; MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals Complete |
subjects | Amino Acid Substitution Angiotensin-Converting Enzyme 2 - immunology Antibodies, Monoclonal - immunology Antibodies, Monoclonal - isolation & purification Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Antibody Formation - immunology Binding, Competitive COVID-19 Vaccines - immunology Humans Immunoglobulin G - metabolism mAbs mRNA vaccination Mutation - genetics NTD plasmablasts Protein Domains RBD RNA, Messenger - immunology SARS-CoV-2 SARS-CoV-2 - immunology Somatic Hypermutation, Immunoglobulin - genetics spike Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology Vaccination |
title | SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20mRNA%20vaccination%20induces%20functionally%20diverse%20antibodies%20to%20NTD,%20RBD,%20and%20S2&rft.jtitle=Cell&rft.au=Amanat,%20Fatima&rft.aucorp=The%20Personalized%20Virology%20Initiative&rft.date=2021-07-22&rft.volume=184&rft.issue=15&rft.spage=3936&rft.epage=3948.e10&rft.pages=3936-3948.e10&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2021.06.005&rft_dat=%3Cpubmed_cross%3E34192529%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34192529&rft_els_id=S0092867421007066&rfr_iscdi=true |