The Widened Pipe Model of plant hydraulic evolution

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (22), p.1-8
Hauptverfasser: Koçillari, Loren, Olson, Mark E., Suweis, Samir, Rocha, Rodrigo P., Lovison, Alberto, Cardin, Franco, Dawson, Todd E., Echeverría, Alberto, Fajardo, Alex, Lechthaler, Silvia, Martínez-Pérez, Cecilia, Marcati, Carmen Regina, Chung, Kuo-Fang, Rosell, Julieta A., Segovia-Rivas, Alí, Williams, Cameron B., Petrone-Mendoza, Emilio, Rinaldo, Andrea, Anfodillo, Tommaso, Banavar, Jayanth R., Maritan, Amos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 22
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Koçillari, Loren
Olson, Mark E.
Suweis, Samir
Rocha, Rodrigo P.
Lovison, Alberto
Cardin, Franco
Dawson, Todd E.
Echeverría, Alberto
Fajardo, Alex
Lechthaler, Silvia
Martínez-Pérez, Cecilia
Marcati, Carmen Regina
Chung, Kuo-Fang
Rosell, Julieta A.
Segovia-Rivas, Alí
Williams, Cameron B.
Petrone-Mendoza, Emilio
Rinaldo, Andrea
Anfodillo, Tommaso
Banavar, Jayanth R.
Maritan, Amos
description Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conductionb-locking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.
doi_str_mv 10.1073/pnas.2100314118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040985</jstor_id><sourcerecordid>27040985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-d9d5c95d4b80f216ff2db692c8c11cbfe2a4c62fa4fb494379243908669b0633</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRtD7WroSAGzfRO69kZiNI8QWKLgouh8k8bEqaiTNJwX9vSktFV3dxvnO4h4PQOYZrDCW96VqdrgkGoJhhLPbQBIPEecEk7KMJAClzwQg7QscpLQBAcgGH6IgyoLLEMEF0NnfZR21d62z2Xncuew3WNVnwWdfots_m3zbqoalN5lahGfo6tKfowOsmubPtPUGzh_vZ9Cl_eXt8nt695IYR6HMrLTeSW1YJ8AQX3hNbFZIYYTA2lXdEM1MQr5mvmGS0lIRRCaIoZAUFpSfodhPbDdXSWePaPupGdbFe6vitgq7VX6Wt5-ozrJTApcRSjAFX24AYvgaXerWsk3HN2MuFISnCKaVYUM5G9PIfughDbMd2I8WAc-CEjNTNhjIxpBSd3z2DQa33UOs91O8eo-Ni41ikPsQdTkpgIAWnPxp0hV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540550522</pqid></control><display><type>article</type><title>The Widened Pipe Model of plant hydraulic evolution</title><source>PubMed Central Free</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koçillari, Loren ; Olson, Mark E. ; Suweis, Samir ; Rocha, Rodrigo P. ; Lovison, Alberto ; Cardin, Franco ; Dawson, Todd E. ; Echeverría, Alberto ; Fajardo, Alex ; Lechthaler, Silvia ; Martínez-Pérez, Cecilia ; Marcati, Carmen Regina ; Chung, Kuo-Fang ; Rosell, Julieta A. ; Segovia-Rivas, Alí ; Williams, Cameron B. ; Petrone-Mendoza, Emilio ; Rinaldo, Andrea ; Anfodillo, Tommaso ; Banavar, Jayanth R. ; Maritan, Amos</creator><creatorcontrib>Koçillari, Loren ; Olson, Mark E. ; Suweis, Samir ; Rocha, Rodrigo P. ; Lovison, Alberto ; Cardin, Franco ; Dawson, Todd E. ; Echeverría, Alberto ; Fajardo, Alex ; Lechthaler, Silvia ; Martínez-Pérez, Cecilia ; Marcati, Carmen Regina ; Chung, Kuo-Fang ; Rosell, Julieta A. ; Segovia-Rivas, Alí ; Williams, Cameron B. ; Petrone-Mendoza, Emilio ; Rinaldo, Andrea ; Anfodillo, Tommaso ; Banavar, Jayanth R. ; Maritan, Amos</creatorcontrib><description>Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conductionb-locking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2100314118</identifier><identifier>PMID: 34039710</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Biological Sciences ; Carbon ; Carbon cycle ; Conduits ; Embolism ; Evolution ; Hydraulics ; Membrane resistance ; Natural selection ; Physical Sciences ; Pipes ; Resistance factors ; Stems ; Widening ; Xylem</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (22), p.1-8</ispartof><rights>Copyright National Academy of Sciences Jun 1, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-d9d5c95d4b80f216ff2db692c8c11cbfe2a4c62fa4fb494379243908669b0633</citedby><cites>FETCH-LOGICAL-c420t-d9d5c95d4b80f216ff2db692c8c11cbfe2a4c62fa4fb494379243908669b0633</cites><orcidid>0000-0002-2202-6207 ; 0000-0003-3628-2567 ; 0000-0002-8959-5009 ; 0000-0001-5723-6450 ; 0000-0002-8503-3762 ; 0000-0002-8729-1781 ; 0000-0001-5500-5309 ; 0000-0003-3715-4567 ; 0000-0003-2130-3927 ; 0000-0001-5651-3567 ; 0000-0001-7940-1592 ; 0000-0002-9752-6871 ; 0000-0001-7301-1796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040985$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040985$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Koçillari, Loren</creatorcontrib><creatorcontrib>Olson, Mark E.</creatorcontrib><creatorcontrib>Suweis, Samir</creatorcontrib><creatorcontrib>Rocha, Rodrigo P.</creatorcontrib><creatorcontrib>Lovison, Alberto</creatorcontrib><creatorcontrib>Cardin, Franco</creatorcontrib><creatorcontrib>Dawson, Todd E.</creatorcontrib><creatorcontrib>Echeverría, Alberto</creatorcontrib><creatorcontrib>Fajardo, Alex</creatorcontrib><creatorcontrib>Lechthaler, Silvia</creatorcontrib><creatorcontrib>Martínez-Pérez, Cecilia</creatorcontrib><creatorcontrib>Marcati, Carmen Regina</creatorcontrib><creatorcontrib>Chung, Kuo-Fang</creatorcontrib><creatorcontrib>Rosell, Julieta A.</creatorcontrib><creatorcontrib>Segovia-Rivas, Alí</creatorcontrib><creatorcontrib>Williams, Cameron B.</creatorcontrib><creatorcontrib>Petrone-Mendoza, Emilio</creatorcontrib><creatorcontrib>Rinaldo, Andrea</creatorcontrib><creatorcontrib>Anfodillo, Tommaso</creatorcontrib><creatorcontrib>Banavar, Jayanth R.</creatorcontrib><creatorcontrib>Maritan, Amos</creatorcontrib><title>The Widened Pipe Model of plant hydraulic evolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conductionb-locking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.</description><subject>Biological Sciences</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Conduits</subject><subject>Embolism</subject><subject>Evolution</subject><subject>Hydraulics</subject><subject>Membrane resistance</subject><subject>Natural selection</subject><subject>Physical Sciences</subject><subject>Pipes</subject><subject>Resistance factors</subject><subject>Stems</subject><subject>Widening</subject><subject>Xylem</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLw0AUhQdRtD7WroSAGzfRO69kZiNI8QWKLgouh8k8bEqaiTNJwX9vSktFV3dxvnO4h4PQOYZrDCW96VqdrgkGoJhhLPbQBIPEecEk7KMJAClzwQg7QscpLQBAcgGH6IgyoLLEMEF0NnfZR21d62z2Xncuew3WNVnwWdfots_m3zbqoalN5lahGfo6tKfowOsmubPtPUGzh_vZ9Cl_eXt8nt695IYR6HMrLTeSW1YJ8AQX3hNbFZIYYTA2lXdEM1MQr5mvmGS0lIRRCaIoZAUFpSfodhPbDdXSWePaPupGdbFe6vitgq7VX6Wt5-ozrJTApcRSjAFX24AYvgaXerWsk3HN2MuFISnCKaVYUM5G9PIfughDbMd2I8WAc-CEjNTNhjIxpBSd3z2DQa33UOs91O8eo-Ni41ikPsQdTkpgIAWnPxp0hV8</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Koçillari, Loren</creator><creator>Olson, Mark E.</creator><creator>Suweis, Samir</creator><creator>Rocha, Rodrigo P.</creator><creator>Lovison, Alberto</creator><creator>Cardin, Franco</creator><creator>Dawson, Todd E.</creator><creator>Echeverría, Alberto</creator><creator>Fajardo, Alex</creator><creator>Lechthaler, Silvia</creator><creator>Martínez-Pérez, Cecilia</creator><creator>Marcati, Carmen Regina</creator><creator>Chung, Kuo-Fang</creator><creator>Rosell, Julieta A.</creator><creator>Segovia-Rivas, Alí</creator><creator>Williams, Cameron B.</creator><creator>Petrone-Mendoza, Emilio</creator><creator>Rinaldo, Andrea</creator><creator>Anfodillo, Tommaso</creator><creator>Banavar, Jayanth R.</creator><creator>Maritan, Amos</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2202-6207</orcidid><orcidid>https://orcid.org/0000-0003-3628-2567</orcidid><orcidid>https://orcid.org/0000-0002-8959-5009</orcidid><orcidid>https://orcid.org/0000-0001-5723-6450</orcidid><orcidid>https://orcid.org/0000-0002-8503-3762</orcidid><orcidid>https://orcid.org/0000-0002-8729-1781</orcidid><orcidid>https://orcid.org/0000-0001-5500-5309</orcidid><orcidid>https://orcid.org/0000-0003-3715-4567</orcidid><orcidid>https://orcid.org/0000-0003-2130-3927</orcidid><orcidid>https://orcid.org/0000-0001-5651-3567</orcidid><orcidid>https://orcid.org/0000-0001-7940-1592</orcidid><orcidid>https://orcid.org/0000-0002-9752-6871</orcidid><orcidid>https://orcid.org/0000-0001-7301-1796</orcidid></search><sort><creationdate>20210601</creationdate><title>The Widened Pipe Model of plant hydraulic evolution</title><author>Koçillari, Loren ; Olson, Mark E. ; Suweis, Samir ; Rocha, Rodrigo P. ; Lovison, Alberto ; Cardin, Franco ; Dawson, Todd E. ; Echeverría, Alberto ; Fajardo, Alex ; Lechthaler, Silvia ; Martínez-Pérez, Cecilia ; Marcati, Carmen Regina ; Chung, Kuo-Fang ; Rosell, Julieta A. ; Segovia-Rivas, Alí ; Williams, Cameron B. ; Petrone-Mendoza, Emilio ; Rinaldo, Andrea ; Anfodillo, Tommaso ; Banavar, Jayanth R. ; Maritan, Amos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-d9d5c95d4b80f216ff2db692c8c11cbfe2a4c62fa4fb494379243908669b0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Conduits</topic><topic>Embolism</topic><topic>Evolution</topic><topic>Hydraulics</topic><topic>Membrane resistance</topic><topic>Natural selection</topic><topic>Physical Sciences</topic><topic>Pipes</topic><topic>Resistance factors</topic><topic>Stems</topic><topic>Widening</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koçillari, Loren</creatorcontrib><creatorcontrib>Olson, Mark E.</creatorcontrib><creatorcontrib>Suweis, Samir</creatorcontrib><creatorcontrib>Rocha, Rodrigo P.</creatorcontrib><creatorcontrib>Lovison, Alberto</creatorcontrib><creatorcontrib>Cardin, Franco</creatorcontrib><creatorcontrib>Dawson, Todd E.</creatorcontrib><creatorcontrib>Echeverría, Alberto</creatorcontrib><creatorcontrib>Fajardo, Alex</creatorcontrib><creatorcontrib>Lechthaler, Silvia</creatorcontrib><creatorcontrib>Martínez-Pérez, Cecilia</creatorcontrib><creatorcontrib>Marcati, Carmen Regina</creatorcontrib><creatorcontrib>Chung, Kuo-Fang</creatorcontrib><creatorcontrib>Rosell, Julieta A.</creatorcontrib><creatorcontrib>Segovia-Rivas, Alí</creatorcontrib><creatorcontrib>Williams, Cameron B.</creatorcontrib><creatorcontrib>Petrone-Mendoza, Emilio</creatorcontrib><creatorcontrib>Rinaldo, Andrea</creatorcontrib><creatorcontrib>Anfodillo, Tommaso</creatorcontrib><creatorcontrib>Banavar, Jayanth R.</creatorcontrib><creatorcontrib>Maritan, Amos</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koçillari, Loren</au><au>Olson, Mark E.</au><au>Suweis, Samir</au><au>Rocha, Rodrigo P.</au><au>Lovison, Alberto</au><au>Cardin, Franco</au><au>Dawson, Todd E.</au><au>Echeverría, Alberto</au><au>Fajardo, Alex</au><au>Lechthaler, Silvia</au><au>Martínez-Pérez, Cecilia</au><au>Marcati, Carmen Regina</au><au>Chung, Kuo-Fang</au><au>Rosell, Julieta A.</au><au>Segovia-Rivas, Alí</au><au>Williams, Cameron B.</au><au>Petrone-Mendoza, Emilio</au><au>Rinaldo, Andrea</au><au>Anfodillo, Tommaso</au><au>Banavar, Jayanth R.</au><au>Maritan, Amos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Widened Pipe Model of plant hydraulic evolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>118</volume><issue>22</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conductionb-locking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34039710</pmid><doi>10.1073/pnas.2100314118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2202-6207</orcidid><orcidid>https://orcid.org/0000-0003-3628-2567</orcidid><orcidid>https://orcid.org/0000-0002-8959-5009</orcidid><orcidid>https://orcid.org/0000-0001-5723-6450</orcidid><orcidid>https://orcid.org/0000-0002-8503-3762</orcidid><orcidid>https://orcid.org/0000-0002-8729-1781</orcidid><orcidid>https://orcid.org/0000-0001-5500-5309</orcidid><orcidid>https://orcid.org/0000-0003-3715-4567</orcidid><orcidid>https://orcid.org/0000-0003-2130-3927</orcidid><orcidid>https://orcid.org/0000-0001-5651-3567</orcidid><orcidid>https://orcid.org/0000-0001-7940-1592</orcidid><orcidid>https://orcid.org/0000-0002-9752-6871</orcidid><orcidid>https://orcid.org/0000-0001-7301-1796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (22), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179198
source PubMed Central Free; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Carbon
Carbon cycle
Conduits
Embolism
Evolution
Hydraulics
Membrane resistance
Natural selection
Physical Sciences
Pipes
Resistance factors
Stems
Widening
Xylem
title The Widened Pipe Model of plant hydraulic evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Widened%20Pipe%20Model%20of%20plant%20hydraulic%20evolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ko%C3%A7illari,%20Loren&rft.date=2021-06-01&rft.volume=118&rft.issue=22&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2100314118&rft_dat=%3Cjstor_pubme%3E27040985%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540550522&rft_id=info:pmid/34039710&rft_jstor_id=27040985&rfr_iscdi=true