In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo

The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-11, Vol.12 (3), p.1068-1079
Hauptverfasser: Weber, John L., Churchill, Emily M., Jockusch, Steffen, Arthur, Evan J., Pun, Andrew B., Zhang, Shiwei, Friesner, Richard A., Campos, Luis M., Reichman, David R., Shee, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 3
container_start_page 1068
container_title Chemical science (Cambridge)
container_volume 12
creator Weber, John L.
Churchill, Emily M.
Jockusch, Steffen
Arthur, Evan J.
Pun, Andrew B.
Zhang, Shiwei
Friesner, Richard A.
Campos, Luis M.
Reichman, David R.
Shee, James
description The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.
doi_str_mv 10.1039/d0sc03381b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481601253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiMEolXphgdAEWxQUcCOr9lUgnCrVMQCWFuOM6aucuzUdg6Fp8fnwuGywpux5W_-md_jqnqI0XOMSPdiRMkgQiQe7lTHLaK44Yx0dw_7Fh1Vpyldo7IIwawV96sjQjEnUpDj6seFr5ObnAn1HGF0Jrvg62Br7b27cpPOIabahljn6OYJcrOPv4FNwjKb4NcQ0-awdrrWy21R1fF7Yx1MY32zaJ-XVf0h-Ax1r-MUHlT3rJ4SnO7jSfXl7ZvP_fvm8uO7i_7lZWMoormhkgHlWhIxSNx2QARm2lrLNNacA2-1poJxIflAKQVsmbWtIB0ZtRRSMHJSne9052VYwWjA56gnNUe3Kv2poJ36-6b4Ul_DWkksOoRxEXi8EwgpO5WMy2Cuil8PJissMcdCFOjpvkoMNwukrFYuGZgm7SEsSbWMUikR2qJP_kGvwxJ9eQPV0iKHcMtIoc52lIkhpQj20DFGajN69Rp96rejf1XgR396PKC_Bl0AuQO-wRBs8QDewAErf4PjUpPhsmt57_J2rH1YfC6pz_4_lfwEj-HLqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481601253</pqid></control><display><type>article</type><title>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Weber, John L. ; Churchill, Emily M. ; Jockusch, Steffen ; Arthur, Evan J. ; Pun, Andrew B. ; Zhang, Shiwei ; Friesner, Richard A. ; Campos, Luis M. ; Reichman, David R. ; Shee, James</creator><creatorcontrib>Weber, John L. ; Churchill, Emily M. ; Jockusch, Steffen ; Arthur, Evan J. ; Pun, Andrew B. ; Zhang, Shiwei ; Friesner, Richard A. ; Campos, Luis M. ; Reichman, David R. ; Shee, James ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><description>The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc03381b</identifier><identifier>PMID: 34163873</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Absorption ; Anthracene ; Atomic energy levels ; Chemistry ; Chemistry, Multidisciplinary ; Chromophores ; Coupling (molecular) ; Density functional theory ; Dimerization ; Electronic structure ; Emission spectra ; Energy gap ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Light emission ; Low temperature ; Mathematical analysis ; Near ultraviolet radiation ; Phosphorescence ; Physical Sciences ; Platinum ; Science &amp; Technology ; Software ; Solvation ; Substitutes ; Upconversion</subject><ispartof>Chemical science (Cambridge), 2020-11, Vol.12 (3), p.1068-1079</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000615335100026</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</citedby><cites>FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</cites><orcidid>0000-0002-4937-9651 ; 0000-0002-4592-5280 ; 0000-0002-3052-912X ; 0000-0001-8333-8151 ; 0000000249379651 ; 0000000183338151 ; 000000023052912X ; 0000000245925280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34163873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816177$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, John L.</creatorcontrib><creatorcontrib>Churchill, Emily M.</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Arthur, Evan J.</creatorcontrib><creatorcontrib>Pun, Andrew B.</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Shee, James</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><title>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</title><title>Chemical science (Cambridge)</title><addtitle>CHEM SCI</addtitle><addtitle>Chem Sci</addtitle><description>The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.</description><subject>Absorption</subject><subject>Anthracene</subject><subject>Atomic energy levels</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chromophores</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Dimerization</subject><subject>Electronic structure</subject><subject>Emission spectra</subject><subject>Energy gap</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Light emission</subject><subject>Low temperature</subject><subject>Mathematical analysis</subject><subject>Near ultraviolet radiation</subject><subject>Phosphorescence</subject><subject>Physical Sciences</subject><subject>Platinum</subject><subject>Science &amp; Technology</subject><subject>Software</subject><subject>Solvation</subject><subject>Substitutes</subject><subject>Upconversion</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkstu1TAQhiMEolXphgdAEWxQUcCOr9lUgnCrVMQCWFuOM6aucuzUdg6Fp8fnwuGywpux5W_-md_jqnqI0XOMSPdiRMkgQiQe7lTHLaK44Yx0dw_7Fh1Vpyldo7IIwawV96sjQjEnUpDj6seFr5ObnAn1HGF0Jrvg62Br7b27cpPOIabahljn6OYJcrOPv4FNwjKb4NcQ0-awdrrWy21R1fF7Yx1MY32zaJ-XVf0h-Ax1r-MUHlT3rJ4SnO7jSfXl7ZvP_fvm8uO7i_7lZWMoormhkgHlWhIxSNx2QARm2lrLNNacA2-1poJxIflAKQVsmbWtIB0ZtRRSMHJSne9052VYwWjA56gnNUe3Kv2poJ36-6b4Ul_DWkksOoRxEXi8EwgpO5WMy2Cuil8PJissMcdCFOjpvkoMNwukrFYuGZgm7SEsSbWMUikR2qJP_kGvwxJ9eQPV0iKHcMtIoc52lIkhpQj20DFGajN69Rp96rejf1XgR396PKC_Bl0AuQO-wRBs8QDewAErf4PjUpPhsmt57_J2rH1YfC6pz_4_lfwEj-HLqw</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Weber, John L.</creator><creator>Churchill, Emily M.</creator><creator>Jockusch, Steffen</creator><creator>Arthur, Evan J.</creator><creator>Pun, Andrew B.</creator><creator>Zhang, Shiwei</creator><creator>Friesner, Richard A.</creator><creator>Campos, Luis M.</creator><creator>Reichman, David R.</creator><creator>Shee, James</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4937-9651</orcidid><orcidid>https://orcid.org/0000-0002-4592-5280</orcidid><orcidid>https://orcid.org/0000-0002-3052-912X</orcidid><orcidid>https://orcid.org/0000-0001-8333-8151</orcidid><orcidid>https://orcid.org/0000000249379651</orcidid><orcidid>https://orcid.org/0000000183338151</orcidid><orcidid>https://orcid.org/000000023052912X</orcidid><orcidid>https://orcid.org/0000000245925280</orcidid></search><sort><creationdate>20201117</creationdate><title>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</title><author>Weber, John L. ; Churchill, Emily M. ; Jockusch, Steffen ; Arthur, Evan J. ; Pun, Andrew B. ; Zhang, Shiwei ; Friesner, Richard A. ; Campos, Luis M. ; Reichman, David R. ; Shee, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Anthracene</topic><topic>Atomic energy levels</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chromophores</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Dimerization</topic><topic>Electronic structure</topic><topic>Emission spectra</topic><topic>Energy gap</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Light emission</topic><topic>Low temperature</topic><topic>Mathematical analysis</topic><topic>Near ultraviolet radiation</topic><topic>Phosphorescence</topic><topic>Physical Sciences</topic><topic>Platinum</topic><topic>Science &amp; Technology</topic><topic>Software</topic><topic>Solvation</topic><topic>Substitutes</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, John L.</creatorcontrib><creatorcontrib>Churchill, Emily M.</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Arthur, Evan J.</creatorcontrib><creatorcontrib>Pun, Andrew B.</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Shee, James</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, John L.</au><au>Churchill, Emily M.</au><au>Jockusch, Steffen</au><au>Arthur, Evan J.</au><au>Pun, Andrew B.</au><au>Zhang, Shiwei</au><au>Friesner, Richard A.</au><au>Campos, Luis M.</au><au>Reichman, David R.</au><au>Shee, James</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>College of William and Mary, Williamsburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</atitle><jtitle>Chemical science (Cambridge)</jtitle><stitle>CHEM SCI</stitle><addtitle>Chem Sci</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>1068</spage><epage>1079</epage><pages>1068-1079</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34163873</pmid><doi>10.1039/d0sc03381b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4937-9651</orcidid><orcidid>https://orcid.org/0000-0002-4592-5280</orcidid><orcidid>https://orcid.org/0000-0002-3052-912X</orcidid><orcidid>https://orcid.org/0000-0001-8333-8151</orcidid><orcidid>https://orcid.org/0000000249379651</orcidid><orcidid>https://orcid.org/0000000183338151</orcidid><orcidid>https://orcid.org/000000023052912X</orcidid><orcidid>https://orcid.org/0000000245925280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-11, Vol.12 (3), p.1068-1079
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179011
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Absorption
Anthracene
Atomic energy levels
Chemistry
Chemistry, Multidisciplinary
Chromophores
Coupling (molecular)
Density functional theory
Dimerization
Electronic structure
Emission spectra
Energy gap
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Light emission
Low temperature
Mathematical analysis
Near ultraviolet radiation
Phosphorescence
Physical Sciences
Platinum
Science & Technology
Software
Solvation
Substitutes
Upconversion
title In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20prediction%20of%20annihilators%20for%20triplet-triplet%20annihilation%20upconversion%20via%20auxiliary-field%20quantum%20Monte%20Carlo&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Weber,%20John%20L.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-11-17&rft.volume=12&rft.issue=3&rft.spage=1068&rft.epage=1079&rft.pages=1068-1079&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc03381b&rft_dat=%3Cproquest_pubme%3E2481601253%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481601253&rft_id=info:pmid/34163873&rfr_iscdi=true