In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo
The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the tri...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2020-11, Vol.12 (3), p.1068-1079 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 3 |
container_start_page | 1068 |
container_title | Chemical science (Cambridge) |
container_volume | 12 |
creator | Weber, John L. Churchill, Emily M. Jockusch, Steffen Arthur, Evan J. Pun, Andrew B. Zhang, Shiwei Friesner, Richard A. Campos, Luis M. Reichman, David R. Shee, James |
description | The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission. |
doi_str_mv | 10.1039/d0sc03381b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481601253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiMEolXphgdAEWxQUcCOr9lUgnCrVMQCWFuOM6aucuzUdg6Fp8fnwuGywpux5W_-md_jqnqI0XOMSPdiRMkgQiQe7lTHLaK44Yx0dw_7Fh1Vpyldo7IIwawV96sjQjEnUpDj6seFr5ObnAn1HGF0Jrvg62Br7b27cpPOIabahljn6OYJcrOPv4FNwjKb4NcQ0-awdrrWy21R1fF7Yx1MY32zaJ-XVf0h-Ax1r-MUHlT3rJ4SnO7jSfXl7ZvP_fvm8uO7i_7lZWMoormhkgHlWhIxSNx2QARm2lrLNNacA2-1poJxIflAKQVsmbWtIB0ZtRRSMHJSne9052VYwWjA56gnNUe3Kv2poJ36-6b4Ul_DWkksOoRxEXi8EwgpO5WMy2Cuil8PJissMcdCFOjpvkoMNwukrFYuGZgm7SEsSbWMUikR2qJP_kGvwxJ9eQPV0iKHcMtIoc52lIkhpQj20DFGajN69Rp96rejf1XgR396PKC_Bl0AuQO-wRBs8QDewAErf4PjUpPhsmt57_J2rH1YfC6pz_4_lfwEj-HLqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481601253</pqid></control><display><type>article</type><title>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Weber, John L. ; Churchill, Emily M. ; Jockusch, Steffen ; Arthur, Evan J. ; Pun, Andrew B. ; Zhang, Shiwei ; Friesner, Richard A. ; Campos, Luis M. ; Reichman, David R. ; Shee, James</creator><creatorcontrib>Weber, John L. ; Churchill, Emily M. ; Jockusch, Steffen ; Arthur, Evan J. ; Pun, Andrew B. ; Zhang, Shiwei ; Friesner, Richard A. ; Campos, Luis M. ; Reichman, David R. ; Shee, James ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><description>The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc03381b</identifier><identifier>PMID: 34163873</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Absorption ; Anthracene ; Atomic energy levels ; Chemistry ; Chemistry, Multidisciplinary ; Chromophores ; Coupling (molecular) ; Density functional theory ; Dimerization ; Electronic structure ; Emission spectra ; Energy gap ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Light emission ; Low temperature ; Mathematical analysis ; Near ultraviolet radiation ; Phosphorescence ; Physical Sciences ; Platinum ; Science & Technology ; Software ; Solvation ; Substitutes ; Upconversion</subject><ispartof>Chemical science (Cambridge), 2020-11, Vol.12 (3), p.1068-1079</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000615335100026</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</citedby><cites>FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</cites><orcidid>0000-0002-4937-9651 ; 0000-0002-4592-5280 ; 0000-0002-3052-912X ; 0000-0001-8333-8151 ; 0000000249379651 ; 0000000183338151 ; 000000023052912X ; 0000000245925280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34163873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816177$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, John L.</creatorcontrib><creatorcontrib>Churchill, Emily M.</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Arthur, Evan J.</creatorcontrib><creatorcontrib>Pun, Andrew B.</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Shee, James</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><title>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</title><title>Chemical science (Cambridge)</title><addtitle>CHEM SCI</addtitle><addtitle>Chem Sci</addtitle><description>The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.</description><subject>Absorption</subject><subject>Anthracene</subject><subject>Atomic energy levels</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chromophores</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Dimerization</subject><subject>Electronic structure</subject><subject>Emission spectra</subject><subject>Energy gap</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Light emission</subject><subject>Low temperature</subject><subject>Mathematical analysis</subject><subject>Near ultraviolet radiation</subject><subject>Phosphorescence</subject><subject>Physical Sciences</subject><subject>Platinum</subject><subject>Science & Technology</subject><subject>Software</subject><subject>Solvation</subject><subject>Substitutes</subject><subject>Upconversion</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkstu1TAQhiMEolXphgdAEWxQUcCOr9lUgnCrVMQCWFuOM6aucuzUdg6Fp8fnwuGywpux5W_-md_jqnqI0XOMSPdiRMkgQiQe7lTHLaK44Yx0dw_7Fh1Vpyldo7IIwawV96sjQjEnUpDj6seFr5ObnAn1HGF0Jrvg62Br7b27cpPOIabahljn6OYJcrOPv4FNwjKb4NcQ0-awdrrWy21R1fF7Yx1MY32zaJ-XVf0h-Ax1r-MUHlT3rJ4SnO7jSfXl7ZvP_fvm8uO7i_7lZWMoormhkgHlWhIxSNx2QARm2lrLNNacA2-1poJxIflAKQVsmbWtIB0ZtRRSMHJSne9052VYwWjA56gnNUe3Kv2poJ36-6b4Ul_DWkksOoRxEXi8EwgpO5WMy2Cuil8PJissMcdCFOjpvkoMNwukrFYuGZgm7SEsSbWMUikR2qJP_kGvwxJ9eQPV0iKHcMtIoc52lIkhpQj20DFGajN69Rp96rejf1XgR396PKC_Bl0AuQO-wRBs8QDewAErf4PjUpPhsmt57_J2rH1YfC6pz_4_lfwEj-HLqw</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Weber, John L.</creator><creator>Churchill, Emily M.</creator><creator>Jockusch, Steffen</creator><creator>Arthur, Evan J.</creator><creator>Pun, Andrew B.</creator><creator>Zhang, Shiwei</creator><creator>Friesner, Richard A.</creator><creator>Campos, Luis M.</creator><creator>Reichman, David R.</creator><creator>Shee, James</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4937-9651</orcidid><orcidid>https://orcid.org/0000-0002-4592-5280</orcidid><orcidid>https://orcid.org/0000-0002-3052-912X</orcidid><orcidid>https://orcid.org/0000-0001-8333-8151</orcidid><orcidid>https://orcid.org/0000000249379651</orcidid><orcidid>https://orcid.org/0000000183338151</orcidid><orcidid>https://orcid.org/000000023052912X</orcidid><orcidid>https://orcid.org/0000000245925280</orcidid></search><sort><creationdate>20201117</creationdate><title>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</title><author>Weber, John L. ; Churchill, Emily M. ; Jockusch, Steffen ; Arthur, Evan J. ; Pun, Andrew B. ; Zhang, Shiwei ; Friesner, Richard A. ; Campos, Luis M. ; Reichman, David R. ; Shee, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-485e46a837b8129e3715afff5a1a66e62aa4756786b444e1f5ff27393da878753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Anthracene</topic><topic>Atomic energy levels</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chromophores</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Dimerization</topic><topic>Electronic structure</topic><topic>Emission spectra</topic><topic>Energy gap</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Light emission</topic><topic>Low temperature</topic><topic>Mathematical analysis</topic><topic>Near ultraviolet radiation</topic><topic>Phosphorescence</topic><topic>Physical Sciences</topic><topic>Platinum</topic><topic>Science & Technology</topic><topic>Software</topic><topic>Solvation</topic><topic>Substitutes</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, John L.</creatorcontrib><creatorcontrib>Churchill, Emily M.</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Arthur, Evan J.</creatorcontrib><creatorcontrib>Pun, Andrew B.</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Shee, James</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, John L.</au><au>Churchill, Emily M.</au><au>Jockusch, Steffen</au><au>Arthur, Evan J.</au><au>Pun, Andrew B.</au><au>Zhang, Shiwei</au><au>Friesner, Richard A.</au><au>Campos, Luis M.</au><au>Reichman, David R.</au><au>Shee, James</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>College of William and Mary, Williamsburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo</atitle><jtitle>Chemical science (Cambridge)</jtitle><stitle>CHEM SCI</stitle><addtitle>Chem Sci</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>1068</spage><epage>1079</epage><pages>1068-1079</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T-0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34163873</pmid><doi>10.1039/d0sc03381b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4937-9651</orcidid><orcidid>https://orcid.org/0000-0002-4592-5280</orcidid><orcidid>https://orcid.org/0000-0002-3052-912X</orcidid><orcidid>https://orcid.org/0000-0001-8333-8151</orcidid><orcidid>https://orcid.org/0000000249379651</orcidid><orcidid>https://orcid.org/0000000183338151</orcidid><orcidid>https://orcid.org/000000023052912X</orcidid><orcidid>https://orcid.org/0000000245925280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2020-11, Vol.12 (3), p.1068-1079 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179011 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Absorption Anthracene Atomic energy levels Chemistry Chemistry, Multidisciplinary Chromophores Coupling (molecular) Density functional theory Dimerization Electronic structure Emission spectra Energy gap INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Light emission Low temperature Mathematical analysis Near ultraviolet radiation Phosphorescence Physical Sciences Platinum Science & Technology Software Solvation Substitutes Upconversion |
title | In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20prediction%20of%20annihilators%20for%20triplet-triplet%20annihilation%20upconversion%20via%20auxiliary-field%20quantum%20Monte%20Carlo&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Weber,%20John%20L.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-11-17&rft.volume=12&rft.issue=3&rft.spage=1068&rft.epage=1079&rft.pages=1068-1079&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc03381b&rft_dat=%3Cproquest_pubme%3E2481601253%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481601253&rft_id=info:pmid/34163873&rfr_iscdi=true |