Right ventricular pressure-volume loop shape and systolic pressure change in pulmonary hypertension

Right ventricular (RV) function determines outcome in pulmonary arterial hypertension (PAH). RV pressure-volume loops, the gold standard for measuring RV function, are difficult to analyze. Our aim was to investigate whether simple assessments of RV pressure-volume loop morphology and RV systolic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2021-05, Vol.320 (5), p.L715-L725
Hauptverfasser: Richter, Manuel J, Hsu, Steven, Yogeswaran, Athiththan, Husain-Syed, Faeq, Vadász, István, Ghofrani, Hossein A, Naeije, Robert, Harth, Sebastian, Grimminger, Friedrich, Seeger, Werner, Gall, Henning, Tedford, Ryan J, Tello, Khodr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Right ventricular (RV) function determines outcome in pulmonary arterial hypertension (PAH). RV pressure-volume loops, the gold standard for measuring RV function, are difficult to analyze. Our aim was to investigate whether simple assessments of RV pressure-volume loop morphology and RV systolic pressure differential reflect PAH severity and RV function. We analyzed multibeat RV pressure-volume loops (obtained by conductance catheterization with preload reduction) in 77 patients with PAH and 15 patients without pulmonary hypertension in two centers. Patients were categorized according to their pressure-volume loop shape (triangular, quadratic, trapezoid, or notched). RV systolic pressure differential was defined as end-systolic minus beginning-systolic pressure (ESP - BSP), augmentation index as ESP - BSP/pulse pressure, pulmonary arterial capacitance (PAC) as stroke volume/pulse pressure, and RV-arterial coupling as end-systolic/arterial elastance (Ees/Ea). Trapezoid and notched pressure-volume loops were associated with the highest afterload (Ea), augmentation index, pulmonary vascular resistance (PVR), mean pulmonary arterial pressure, stroke work, B-type natriuretic peptide, and the lowest Ees/Ea and PAC. Multivariate linear regression identified Ea, PVR, and stroke work as the main determinants of ESP - BSP. ESP - BSP also significantly correlated with multibeat Ees/Ea (Spearman's ρ: -0.518, < 0.001). A separate retrospective analysis of 113 patients with PAH showed that ESP - BSP obtained by routine right heart catheterization significantly correlated with a noninvasive surrogate of RV-arterial coupling (tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio; ρ: -0.376, < 0.001). In conclusion, pressure-volume loop shape and RV systolic pressure differential predominately depend on afterload and PAH severity and reflect RV-arterial coupling in PAH.
ISSN:1040-0605
1522-1504
DOI:10.1152/ajplung.00583.2020