SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-05, Vol.7 (22)
Hauptverfasser: Rosa, Annachiara, Pye, Valerie E, Graham, Carl, Muir, Luke, Seow, Jeffrey, Ng, Kevin W, Cook, Nicola J, Rees-Spear, Chloe, Parker, Eleanor, Dos Santos, Mariana Silva, Rosadas, Carolina, Susana, Alberto, Rhys, Hefin, Nans, Andrea, Masino, Laura, Roustan, Chloe, Christodoulou, Evangelos, Ulferts, Rachel, Wrobel, Antoni G, Short, Charlotte-Eve, Fertleman, Michael, Sanders, Rogier W, Heaney, Judith, Spyer, Moira, Kjær, Svend, Riddell, Andy, Malim, Michael H, Beale, Rupert, MacRae, James I, Taylor, Graham P, Nastouli, Eleni, van Gils, Marit J, Rosenthal, Peter B, Pizzato, Massimo, McClure, Myra O, Tedder, Richard S, Kassiotis, George, McCoy, Laura E, Doores, Katie J, Cherepanov, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Science advances
container_volume 7
creator Rosa, Annachiara
Pye, Valerie E
Graham, Carl
Muir, Luke
Seow, Jeffrey
Ng, Kevin W
Cook, Nicola J
Rees-Spear, Chloe
Parker, Eleanor
Dos Santos, Mariana Silva
Rosadas, Carolina
Susana, Alberto
Rhys, Hefin
Nans, Andrea
Masino, Laura
Roustan, Chloe
Christodoulou, Evangelos
Ulferts, Rachel
Wrobel, Antoni G
Short, Charlotte-Eve
Fertleman, Michael
Sanders, Rogier W
Heaney, Judith
Spyer, Moira
Kjær, Svend
Riddell, Andy
Malim, Michael H
Beale, Rupert
MacRae, James I
Taylor, Graham P
Nastouli, Eleni
van Gils, Marit J
Rosenthal, Peter B
Pizzato, Massimo
McClure, Myra O
Tedder, Richard S
Kassiotis, George
McCoy, Laura E
Doores, Katie J
Cherepanov, Peter
description The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.
doi_str_mv 10.1126/sciadv.abg7607
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518546824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</originalsourceid><addsrcrecordid>eNpVkEtrAjEUhUNpqWLddlmy7GZs3ombgkhfIBSqdBuSTNSUmYmdZAT_fS1asat74Z5z7uED4BajEcZEPCQXTLkdGbuSAskL0CdU8oJwpi7P9h4YpvSFEMJMCI7H16BHqVKKCdkH0_nkY15M42dBoDMNbL1ru5ChgWtfe1j7bGysQvYwR-i3pvTQNDnYWO5gqOuuCXl3A66Wpkp-eJwDsHh-Wkxfi9n7y9t0MiscUywXXCAzxk5ZyhmWEjurLFlK4yxSpSSM0nLsOPYYqzFlpfDKCYWIw5wYbks6AI-H2E1na1863-TWVHrThtq0Ox1N0P8vTVjrVdxqhQVFUu4D7o8BbfzufMq6Dsn5qjKNj13ShGPFmVD7KgMwOkhdG1Nq_fL0BiP9y14f2Osj-73h7rzcSf5Hmv4ASSKBMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518546824</pqid></control><display><type>article</type><title>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rosa, Annachiara ; Pye, Valerie E ; Graham, Carl ; Muir, Luke ; Seow, Jeffrey ; Ng, Kevin W ; Cook, Nicola J ; Rees-Spear, Chloe ; Parker, Eleanor ; Dos Santos, Mariana Silva ; Rosadas, Carolina ; Susana, Alberto ; Rhys, Hefin ; Nans, Andrea ; Masino, Laura ; Roustan, Chloe ; Christodoulou, Evangelos ; Ulferts, Rachel ; Wrobel, Antoni G ; Short, Charlotte-Eve ; Fertleman, Michael ; Sanders, Rogier W ; Heaney, Judith ; Spyer, Moira ; Kjær, Svend ; Riddell, Andy ; Malim, Michael H ; Beale, Rupert ; MacRae, James I ; Taylor, Graham P ; Nastouli, Eleni ; van Gils, Marit J ; Rosenthal, Peter B ; Pizzato, Massimo ; McClure, Myra O ; Tedder, Richard S ; Kassiotis, George ; McCoy, Laura E ; Doores, Katie J ; Cherepanov, Peter</creator><creatorcontrib>Rosa, Annachiara ; Pye, Valerie E ; Graham, Carl ; Muir, Luke ; Seow, Jeffrey ; Ng, Kevin W ; Cook, Nicola J ; Rees-Spear, Chloe ; Parker, Eleanor ; Dos Santos, Mariana Silva ; Rosadas, Carolina ; Susana, Alberto ; Rhys, Hefin ; Nans, Andrea ; Masino, Laura ; Roustan, Chloe ; Christodoulou, Evangelos ; Ulferts, Rachel ; Wrobel, Antoni G ; Short, Charlotte-Eve ; Fertleman, Michael ; Sanders, Rogier W ; Heaney, Judith ; Spyer, Moira ; Kjær, Svend ; Riddell, Andy ; Malim, Michael H ; Beale, Rupert ; MacRae, James I ; Taylor, Graham P ; Nastouli, Eleni ; van Gils, Marit J ; Rosenthal, Peter B ; Pizzato, Massimo ; McClure, Myra O ; Tedder, Richard S ; Kassiotis, George ; McCoy, Laura E ; Doores, Katie J ; Cherepanov, Peter</creatorcontrib><description>The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abg7607</identifier><identifier>PMID: 33888467</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - metabolism ; Antibodies, Neutralizing - immunology ; Bilirubin - metabolism ; Biliverdine - metabolism ; Coronavirus ; COVID-19 - immunology ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Epitopes ; Heme - metabolism ; Humans ; Immune Sera ; Life Sciences ; Microbiology ; SARS-CoV-2 - immunology ; SARS-CoV-2 - pathogenicity ; SciAdv r-articles ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - immunology ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Science advances, 2021-05, Vol.7 (22)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</citedby><cites>FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</cites><orcidid>0000-0001-9149-6029 ; 0000-0002-7300-2432 ; 0000-0002-3791-2447 ; 0000-0002-3922-5667 ; 0000-0002-9491-1483 ; 0000-0002-6680-5587 ; 0000-0002-4974-8824 ; 0000-0002-5507-1725 ; 0000-0003-3422-8161 ; 0000-0002-2738-7976 ; 0000-0003-0722-8561 ; 0000-0002-1464-8583 ; 0000-0002-6705-8560 ; 0000-0002-5326-7003 ; 0000-0002-8457-2633 ; 0000-0002-0387-2862 ; 0000-0003-2404-8490 ; 0000-0002-2324-8573 ; 0000-0002-4810-9115 ; 0000-0001-7433-6357 ; 0000-0001-9503-7946 ; 0000-0002-8439-8997 ; 0000-0001-9616-2992 ; 0000-0002-7834-6066 ; 0000-0002-3773-2390 ; 0000-0002-9672-5721 ; 0000-0002-0634-538X ; 0000-0001-9767-8683 ; 0000-0003-1635-6768 ; 0000-0003-4023-1156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33888467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosa, Annachiara</creatorcontrib><creatorcontrib>Pye, Valerie E</creatorcontrib><creatorcontrib>Graham, Carl</creatorcontrib><creatorcontrib>Muir, Luke</creatorcontrib><creatorcontrib>Seow, Jeffrey</creatorcontrib><creatorcontrib>Ng, Kevin W</creatorcontrib><creatorcontrib>Cook, Nicola J</creatorcontrib><creatorcontrib>Rees-Spear, Chloe</creatorcontrib><creatorcontrib>Parker, Eleanor</creatorcontrib><creatorcontrib>Dos Santos, Mariana Silva</creatorcontrib><creatorcontrib>Rosadas, Carolina</creatorcontrib><creatorcontrib>Susana, Alberto</creatorcontrib><creatorcontrib>Rhys, Hefin</creatorcontrib><creatorcontrib>Nans, Andrea</creatorcontrib><creatorcontrib>Masino, Laura</creatorcontrib><creatorcontrib>Roustan, Chloe</creatorcontrib><creatorcontrib>Christodoulou, Evangelos</creatorcontrib><creatorcontrib>Ulferts, Rachel</creatorcontrib><creatorcontrib>Wrobel, Antoni G</creatorcontrib><creatorcontrib>Short, Charlotte-Eve</creatorcontrib><creatorcontrib>Fertleman, Michael</creatorcontrib><creatorcontrib>Sanders, Rogier W</creatorcontrib><creatorcontrib>Heaney, Judith</creatorcontrib><creatorcontrib>Spyer, Moira</creatorcontrib><creatorcontrib>Kjær, Svend</creatorcontrib><creatorcontrib>Riddell, Andy</creatorcontrib><creatorcontrib>Malim, Michael H</creatorcontrib><creatorcontrib>Beale, Rupert</creatorcontrib><creatorcontrib>MacRae, James I</creatorcontrib><creatorcontrib>Taylor, Graham P</creatorcontrib><creatorcontrib>Nastouli, Eleni</creatorcontrib><creatorcontrib>van Gils, Marit J</creatorcontrib><creatorcontrib>Rosenthal, Peter B</creatorcontrib><creatorcontrib>Pizzato, Massimo</creatorcontrib><creatorcontrib>McClure, Myra O</creatorcontrib><creatorcontrib>Tedder, Richard S</creatorcontrib><creatorcontrib>Kassiotis, George</creatorcontrib><creatorcontrib>McCoy, Laura E</creatorcontrib><creatorcontrib>Doores, Katie J</creatorcontrib><creatorcontrib>Cherepanov, Peter</creatorcontrib><title>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.</description><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Bilirubin - metabolism</subject><subject>Biliverdine - metabolism</subject><subject>Coronavirus</subject><subject>COVID-19 - immunology</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Epitopes</subject><subject>Heme - metabolism</subject><subject>Humans</subject><subject>Immune Sera</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>SARS-CoV-2 - immunology</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>SciAdv r-articles</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - immunology</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtrAjEUhUNpqWLddlmy7GZs3ombgkhfIBSqdBuSTNSUmYmdZAT_fS1asat74Z5z7uED4BajEcZEPCQXTLkdGbuSAskL0CdU8oJwpi7P9h4YpvSFEMJMCI7H16BHqVKKCdkH0_nkY15M42dBoDMNbL1ru5ChgWtfe1j7bGysQvYwR-i3pvTQNDnYWO5gqOuuCXl3A66Wpkp-eJwDsHh-Wkxfi9n7y9t0MiscUywXXCAzxk5ZyhmWEjurLFlK4yxSpSSM0nLsOPYYqzFlpfDKCYWIw5wYbks6AI-H2E1na1863-TWVHrThtq0Ox1N0P8vTVjrVdxqhQVFUu4D7o8BbfzufMq6Dsn5qjKNj13ShGPFmVD7KgMwOkhdG1Nq_fL0BiP9y14f2Osj-73h7rzcSf5Hmv4ASSKBMg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rosa, Annachiara</creator><creator>Pye, Valerie E</creator><creator>Graham, Carl</creator><creator>Muir, Luke</creator><creator>Seow, Jeffrey</creator><creator>Ng, Kevin W</creator><creator>Cook, Nicola J</creator><creator>Rees-Spear, Chloe</creator><creator>Parker, Eleanor</creator><creator>Dos Santos, Mariana Silva</creator><creator>Rosadas, Carolina</creator><creator>Susana, Alberto</creator><creator>Rhys, Hefin</creator><creator>Nans, Andrea</creator><creator>Masino, Laura</creator><creator>Roustan, Chloe</creator><creator>Christodoulou, Evangelos</creator><creator>Ulferts, Rachel</creator><creator>Wrobel, Antoni G</creator><creator>Short, Charlotte-Eve</creator><creator>Fertleman, Michael</creator><creator>Sanders, Rogier W</creator><creator>Heaney, Judith</creator><creator>Spyer, Moira</creator><creator>Kjær, Svend</creator><creator>Riddell, Andy</creator><creator>Malim, Michael H</creator><creator>Beale, Rupert</creator><creator>MacRae, James I</creator><creator>Taylor, Graham P</creator><creator>Nastouli, Eleni</creator><creator>van Gils, Marit J</creator><creator>Rosenthal, Peter B</creator><creator>Pizzato, Massimo</creator><creator>McClure, Myra O</creator><creator>Tedder, Richard S</creator><creator>Kassiotis, George</creator><creator>McCoy, Laura E</creator><creator>Doores, Katie J</creator><creator>Cherepanov, Peter</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9149-6029</orcidid><orcidid>https://orcid.org/0000-0002-7300-2432</orcidid><orcidid>https://orcid.org/0000-0002-3791-2447</orcidid><orcidid>https://orcid.org/0000-0002-3922-5667</orcidid><orcidid>https://orcid.org/0000-0002-9491-1483</orcidid><orcidid>https://orcid.org/0000-0002-6680-5587</orcidid><orcidid>https://orcid.org/0000-0002-4974-8824</orcidid><orcidid>https://orcid.org/0000-0002-5507-1725</orcidid><orcidid>https://orcid.org/0000-0003-3422-8161</orcidid><orcidid>https://orcid.org/0000-0002-2738-7976</orcidid><orcidid>https://orcid.org/0000-0003-0722-8561</orcidid><orcidid>https://orcid.org/0000-0002-1464-8583</orcidid><orcidid>https://orcid.org/0000-0002-6705-8560</orcidid><orcidid>https://orcid.org/0000-0002-5326-7003</orcidid><orcidid>https://orcid.org/0000-0002-8457-2633</orcidid><orcidid>https://orcid.org/0000-0002-0387-2862</orcidid><orcidid>https://orcid.org/0000-0003-2404-8490</orcidid><orcidid>https://orcid.org/0000-0002-2324-8573</orcidid><orcidid>https://orcid.org/0000-0002-4810-9115</orcidid><orcidid>https://orcid.org/0000-0001-7433-6357</orcidid><orcidid>https://orcid.org/0000-0001-9503-7946</orcidid><orcidid>https://orcid.org/0000-0002-8439-8997</orcidid><orcidid>https://orcid.org/0000-0001-9616-2992</orcidid><orcidid>https://orcid.org/0000-0002-7834-6066</orcidid><orcidid>https://orcid.org/0000-0002-3773-2390</orcidid><orcidid>https://orcid.org/0000-0002-9672-5721</orcidid><orcidid>https://orcid.org/0000-0002-0634-538X</orcidid><orcidid>https://orcid.org/0000-0001-9767-8683</orcidid><orcidid>https://orcid.org/0000-0003-1635-6768</orcidid><orcidid>https://orcid.org/0000-0003-4023-1156</orcidid></search><sort><creationdate>20210501</creationdate><title>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</title><author>Rosa, Annachiara ; Pye, Valerie E ; Graham, Carl ; Muir, Luke ; Seow, Jeffrey ; Ng, Kevin W ; Cook, Nicola J ; Rees-Spear, Chloe ; Parker, Eleanor ; Dos Santos, Mariana Silva ; Rosadas, Carolina ; Susana, Alberto ; Rhys, Hefin ; Nans, Andrea ; Masino, Laura ; Roustan, Chloe ; Christodoulou, Evangelos ; Ulferts, Rachel ; Wrobel, Antoni G ; Short, Charlotte-Eve ; Fertleman, Michael ; Sanders, Rogier W ; Heaney, Judith ; Spyer, Moira ; Kjær, Svend ; Riddell, Andy ; Malim, Michael H ; Beale, Rupert ; MacRae, James I ; Taylor, Graham P ; Nastouli, Eleni ; van Gils, Marit J ; Rosenthal, Peter B ; Pizzato, Massimo ; McClure, Myra O ; Tedder, Richard S ; Kassiotis, George ; McCoy, Laura E ; Doores, Katie J ; Cherepanov, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Bilirubin - metabolism</topic><topic>Biliverdine - metabolism</topic><topic>Coronavirus</topic><topic>COVID-19 - immunology</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Epitopes</topic><topic>Heme - metabolism</topic><topic>Humans</topic><topic>Immune Sera</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>SARS-CoV-2 - immunology</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>SciAdv r-articles</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - immunology</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosa, Annachiara</creatorcontrib><creatorcontrib>Pye, Valerie E</creatorcontrib><creatorcontrib>Graham, Carl</creatorcontrib><creatorcontrib>Muir, Luke</creatorcontrib><creatorcontrib>Seow, Jeffrey</creatorcontrib><creatorcontrib>Ng, Kevin W</creatorcontrib><creatorcontrib>Cook, Nicola J</creatorcontrib><creatorcontrib>Rees-Spear, Chloe</creatorcontrib><creatorcontrib>Parker, Eleanor</creatorcontrib><creatorcontrib>Dos Santos, Mariana Silva</creatorcontrib><creatorcontrib>Rosadas, Carolina</creatorcontrib><creatorcontrib>Susana, Alberto</creatorcontrib><creatorcontrib>Rhys, Hefin</creatorcontrib><creatorcontrib>Nans, Andrea</creatorcontrib><creatorcontrib>Masino, Laura</creatorcontrib><creatorcontrib>Roustan, Chloe</creatorcontrib><creatorcontrib>Christodoulou, Evangelos</creatorcontrib><creatorcontrib>Ulferts, Rachel</creatorcontrib><creatorcontrib>Wrobel, Antoni G</creatorcontrib><creatorcontrib>Short, Charlotte-Eve</creatorcontrib><creatorcontrib>Fertleman, Michael</creatorcontrib><creatorcontrib>Sanders, Rogier W</creatorcontrib><creatorcontrib>Heaney, Judith</creatorcontrib><creatorcontrib>Spyer, Moira</creatorcontrib><creatorcontrib>Kjær, Svend</creatorcontrib><creatorcontrib>Riddell, Andy</creatorcontrib><creatorcontrib>Malim, Michael H</creatorcontrib><creatorcontrib>Beale, Rupert</creatorcontrib><creatorcontrib>MacRae, James I</creatorcontrib><creatorcontrib>Taylor, Graham P</creatorcontrib><creatorcontrib>Nastouli, Eleni</creatorcontrib><creatorcontrib>van Gils, Marit J</creatorcontrib><creatorcontrib>Rosenthal, Peter B</creatorcontrib><creatorcontrib>Pizzato, Massimo</creatorcontrib><creatorcontrib>McClure, Myra O</creatorcontrib><creatorcontrib>Tedder, Richard S</creatorcontrib><creatorcontrib>Kassiotis, George</creatorcontrib><creatorcontrib>McCoy, Laura E</creatorcontrib><creatorcontrib>Doores, Katie J</creatorcontrib><creatorcontrib>Cherepanov, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosa, Annachiara</au><au>Pye, Valerie E</au><au>Graham, Carl</au><au>Muir, Luke</au><au>Seow, Jeffrey</au><au>Ng, Kevin W</au><au>Cook, Nicola J</au><au>Rees-Spear, Chloe</au><au>Parker, Eleanor</au><au>Dos Santos, Mariana Silva</au><au>Rosadas, Carolina</au><au>Susana, Alberto</au><au>Rhys, Hefin</au><au>Nans, Andrea</au><au>Masino, Laura</au><au>Roustan, Chloe</au><au>Christodoulou, Evangelos</au><au>Ulferts, Rachel</au><au>Wrobel, Antoni G</au><au>Short, Charlotte-Eve</au><au>Fertleman, Michael</au><au>Sanders, Rogier W</au><au>Heaney, Judith</au><au>Spyer, Moira</au><au>Kjær, Svend</au><au>Riddell, Andy</au><au>Malim, Michael H</au><au>Beale, Rupert</au><au>MacRae, James I</au><au>Taylor, Graham P</au><au>Nastouli, Eleni</au><au>van Gils, Marit J</au><au>Rosenthal, Peter B</au><au>Pizzato, Massimo</au><au>McClure, Myra O</au><au>Tedder, Richard S</au><au>Kassiotis, George</au><au>McCoy, Laura E</au><au>Doores, Katie J</au><au>Cherepanov, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>7</volume><issue>22</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33888467</pmid><doi>10.1126/sciadv.abg7607</doi><orcidid>https://orcid.org/0000-0001-9149-6029</orcidid><orcidid>https://orcid.org/0000-0002-7300-2432</orcidid><orcidid>https://orcid.org/0000-0002-3791-2447</orcidid><orcidid>https://orcid.org/0000-0002-3922-5667</orcidid><orcidid>https://orcid.org/0000-0002-9491-1483</orcidid><orcidid>https://orcid.org/0000-0002-6680-5587</orcidid><orcidid>https://orcid.org/0000-0002-4974-8824</orcidid><orcidid>https://orcid.org/0000-0002-5507-1725</orcidid><orcidid>https://orcid.org/0000-0003-3422-8161</orcidid><orcidid>https://orcid.org/0000-0002-2738-7976</orcidid><orcidid>https://orcid.org/0000-0003-0722-8561</orcidid><orcidid>https://orcid.org/0000-0002-1464-8583</orcidid><orcidid>https://orcid.org/0000-0002-6705-8560</orcidid><orcidid>https://orcid.org/0000-0002-5326-7003</orcidid><orcidid>https://orcid.org/0000-0002-8457-2633</orcidid><orcidid>https://orcid.org/0000-0002-0387-2862</orcidid><orcidid>https://orcid.org/0000-0003-2404-8490</orcidid><orcidid>https://orcid.org/0000-0002-2324-8573</orcidid><orcidid>https://orcid.org/0000-0002-4810-9115</orcidid><orcidid>https://orcid.org/0000-0001-7433-6357</orcidid><orcidid>https://orcid.org/0000-0001-9503-7946</orcidid><orcidid>https://orcid.org/0000-0002-8439-8997</orcidid><orcidid>https://orcid.org/0000-0001-9616-2992</orcidid><orcidid>https://orcid.org/0000-0002-7834-6066</orcidid><orcidid>https://orcid.org/0000-0002-3773-2390</orcidid><orcidid>https://orcid.org/0000-0002-9672-5721</orcidid><orcidid>https://orcid.org/0000-0002-0634-538X</orcidid><orcidid>https://orcid.org/0000-0001-9767-8683</orcidid><orcidid>https://orcid.org/0000-0003-1635-6768</orcidid><orcidid>https://orcid.org/0000-0003-4023-1156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-05, Vol.7 (22)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163077
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - metabolism
Antibodies, Neutralizing - immunology
Bilirubin - metabolism
Biliverdine - metabolism
Coronavirus
COVID-19 - immunology
Cryoelectron Microscopy
Crystallography, X-Ray
Epitopes
Heme - metabolism
Humans
Immune Sera
Life Sciences
Microbiology
SARS-CoV-2 - immunology
SARS-CoV-2 - pathogenicity
SciAdv r-articles
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
title SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20can%20recruit%20a%20heme%20metabolite%20to%20evade%20antibody%20immunity&rft.jtitle=Science%20advances&rft.au=Rosa,%20Annachiara&rft.date=2021-05-01&rft.volume=7&rft.issue=22&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abg7607&rft_dat=%3Cproquest_pubme%3E2518546824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518546824&rft_id=info:pmid/33888467&rfr_iscdi=true