SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity
The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-05, Vol.7 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Rosa, Annachiara Pye, Valerie E Graham, Carl Muir, Luke Seow, Jeffrey Ng, Kevin W Cook, Nicola J Rees-Spear, Chloe Parker, Eleanor Dos Santos, Mariana Silva Rosadas, Carolina Susana, Alberto Rhys, Hefin Nans, Andrea Masino, Laura Roustan, Chloe Christodoulou, Evangelos Ulferts, Rachel Wrobel, Antoni G Short, Charlotte-Eve Fertleman, Michael Sanders, Rogier W Heaney, Judith Spyer, Moira Kjær, Svend Riddell, Andy Malim, Michael H Beale, Rupert MacRae, James I Taylor, Graham P Nastouli, Eleni van Gils, Marit J Rosenthal, Peter B Pizzato, Massimo McClure, Myra O Tedder, Richard S Kassiotis, George McCoy, Laura E Doores, Katie J Cherepanov, Peter |
description | The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite. |
doi_str_mv | 10.1126/sciadv.abg7607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518546824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</originalsourceid><addsrcrecordid>eNpVkEtrAjEUhUNpqWLddlmy7GZs3ombgkhfIBSqdBuSTNSUmYmdZAT_fS1asat74Z5z7uED4BajEcZEPCQXTLkdGbuSAskL0CdU8oJwpi7P9h4YpvSFEMJMCI7H16BHqVKKCdkH0_nkY15M42dBoDMNbL1ru5ChgWtfe1j7bGysQvYwR-i3pvTQNDnYWO5gqOuuCXl3A66Wpkp-eJwDsHh-Wkxfi9n7y9t0MiscUywXXCAzxk5ZyhmWEjurLFlK4yxSpSSM0nLsOPYYqzFlpfDKCYWIw5wYbks6AI-H2E1na1863-TWVHrThtq0Ox1N0P8vTVjrVdxqhQVFUu4D7o8BbfzufMq6Dsn5qjKNj13ShGPFmVD7KgMwOkhdG1Nq_fL0BiP9y14f2Osj-73h7rzcSf5Hmv4ASSKBMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518546824</pqid></control><display><type>article</type><title>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rosa, Annachiara ; Pye, Valerie E ; Graham, Carl ; Muir, Luke ; Seow, Jeffrey ; Ng, Kevin W ; Cook, Nicola J ; Rees-Spear, Chloe ; Parker, Eleanor ; Dos Santos, Mariana Silva ; Rosadas, Carolina ; Susana, Alberto ; Rhys, Hefin ; Nans, Andrea ; Masino, Laura ; Roustan, Chloe ; Christodoulou, Evangelos ; Ulferts, Rachel ; Wrobel, Antoni G ; Short, Charlotte-Eve ; Fertleman, Michael ; Sanders, Rogier W ; Heaney, Judith ; Spyer, Moira ; Kjær, Svend ; Riddell, Andy ; Malim, Michael H ; Beale, Rupert ; MacRae, James I ; Taylor, Graham P ; Nastouli, Eleni ; van Gils, Marit J ; Rosenthal, Peter B ; Pizzato, Massimo ; McClure, Myra O ; Tedder, Richard S ; Kassiotis, George ; McCoy, Laura E ; Doores, Katie J ; Cherepanov, Peter</creator><creatorcontrib>Rosa, Annachiara ; Pye, Valerie E ; Graham, Carl ; Muir, Luke ; Seow, Jeffrey ; Ng, Kevin W ; Cook, Nicola J ; Rees-Spear, Chloe ; Parker, Eleanor ; Dos Santos, Mariana Silva ; Rosadas, Carolina ; Susana, Alberto ; Rhys, Hefin ; Nans, Andrea ; Masino, Laura ; Roustan, Chloe ; Christodoulou, Evangelos ; Ulferts, Rachel ; Wrobel, Antoni G ; Short, Charlotte-Eve ; Fertleman, Michael ; Sanders, Rogier W ; Heaney, Judith ; Spyer, Moira ; Kjær, Svend ; Riddell, Andy ; Malim, Michael H ; Beale, Rupert ; MacRae, James I ; Taylor, Graham P ; Nastouli, Eleni ; van Gils, Marit J ; Rosenthal, Peter B ; Pizzato, Massimo ; McClure, Myra O ; Tedder, Richard S ; Kassiotis, George ; McCoy, Laura E ; Doores, Katie J ; Cherepanov, Peter</creatorcontrib><description>The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abg7607</identifier><identifier>PMID: 33888467</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - metabolism ; Antibodies, Neutralizing - immunology ; Bilirubin - metabolism ; Biliverdine - metabolism ; Coronavirus ; COVID-19 - immunology ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Epitopes ; Heme - metabolism ; Humans ; Immune Sera ; Life Sciences ; Microbiology ; SARS-CoV-2 - immunology ; SARS-CoV-2 - pathogenicity ; SciAdv r-articles ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - immunology ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Science advances, 2021-05, Vol.7 (22)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</citedby><cites>FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</cites><orcidid>0000-0001-9149-6029 ; 0000-0002-7300-2432 ; 0000-0002-3791-2447 ; 0000-0002-3922-5667 ; 0000-0002-9491-1483 ; 0000-0002-6680-5587 ; 0000-0002-4974-8824 ; 0000-0002-5507-1725 ; 0000-0003-3422-8161 ; 0000-0002-2738-7976 ; 0000-0003-0722-8561 ; 0000-0002-1464-8583 ; 0000-0002-6705-8560 ; 0000-0002-5326-7003 ; 0000-0002-8457-2633 ; 0000-0002-0387-2862 ; 0000-0003-2404-8490 ; 0000-0002-2324-8573 ; 0000-0002-4810-9115 ; 0000-0001-7433-6357 ; 0000-0001-9503-7946 ; 0000-0002-8439-8997 ; 0000-0001-9616-2992 ; 0000-0002-7834-6066 ; 0000-0002-3773-2390 ; 0000-0002-9672-5721 ; 0000-0002-0634-538X ; 0000-0001-9767-8683 ; 0000-0003-1635-6768 ; 0000-0003-4023-1156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33888467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosa, Annachiara</creatorcontrib><creatorcontrib>Pye, Valerie E</creatorcontrib><creatorcontrib>Graham, Carl</creatorcontrib><creatorcontrib>Muir, Luke</creatorcontrib><creatorcontrib>Seow, Jeffrey</creatorcontrib><creatorcontrib>Ng, Kevin W</creatorcontrib><creatorcontrib>Cook, Nicola J</creatorcontrib><creatorcontrib>Rees-Spear, Chloe</creatorcontrib><creatorcontrib>Parker, Eleanor</creatorcontrib><creatorcontrib>Dos Santos, Mariana Silva</creatorcontrib><creatorcontrib>Rosadas, Carolina</creatorcontrib><creatorcontrib>Susana, Alberto</creatorcontrib><creatorcontrib>Rhys, Hefin</creatorcontrib><creatorcontrib>Nans, Andrea</creatorcontrib><creatorcontrib>Masino, Laura</creatorcontrib><creatorcontrib>Roustan, Chloe</creatorcontrib><creatorcontrib>Christodoulou, Evangelos</creatorcontrib><creatorcontrib>Ulferts, Rachel</creatorcontrib><creatorcontrib>Wrobel, Antoni G</creatorcontrib><creatorcontrib>Short, Charlotte-Eve</creatorcontrib><creatorcontrib>Fertleman, Michael</creatorcontrib><creatorcontrib>Sanders, Rogier W</creatorcontrib><creatorcontrib>Heaney, Judith</creatorcontrib><creatorcontrib>Spyer, Moira</creatorcontrib><creatorcontrib>Kjær, Svend</creatorcontrib><creatorcontrib>Riddell, Andy</creatorcontrib><creatorcontrib>Malim, Michael H</creatorcontrib><creatorcontrib>Beale, Rupert</creatorcontrib><creatorcontrib>MacRae, James I</creatorcontrib><creatorcontrib>Taylor, Graham P</creatorcontrib><creatorcontrib>Nastouli, Eleni</creatorcontrib><creatorcontrib>van Gils, Marit J</creatorcontrib><creatorcontrib>Rosenthal, Peter B</creatorcontrib><creatorcontrib>Pizzato, Massimo</creatorcontrib><creatorcontrib>McClure, Myra O</creatorcontrib><creatorcontrib>Tedder, Richard S</creatorcontrib><creatorcontrib>Kassiotis, George</creatorcontrib><creatorcontrib>McCoy, Laura E</creatorcontrib><creatorcontrib>Doores, Katie J</creatorcontrib><creatorcontrib>Cherepanov, Peter</creatorcontrib><title>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.</description><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Bilirubin - metabolism</subject><subject>Biliverdine - metabolism</subject><subject>Coronavirus</subject><subject>COVID-19 - immunology</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Epitopes</subject><subject>Heme - metabolism</subject><subject>Humans</subject><subject>Immune Sera</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>SARS-CoV-2 - immunology</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>SciAdv r-articles</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - immunology</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtrAjEUhUNpqWLddlmy7GZs3ombgkhfIBSqdBuSTNSUmYmdZAT_fS1asat74Z5z7uED4BajEcZEPCQXTLkdGbuSAskL0CdU8oJwpi7P9h4YpvSFEMJMCI7H16BHqVKKCdkH0_nkY15M42dBoDMNbL1ru5ChgWtfe1j7bGysQvYwR-i3pvTQNDnYWO5gqOuuCXl3A66Wpkp-eJwDsHh-Wkxfi9n7y9t0MiscUywXXCAzxk5ZyhmWEjurLFlK4yxSpSSM0nLsOPYYqzFlpfDKCYWIw5wYbks6AI-H2E1na1863-TWVHrThtq0Ox1N0P8vTVjrVdxqhQVFUu4D7o8BbfzufMq6Dsn5qjKNj13ShGPFmVD7KgMwOkhdG1Nq_fL0BiP9y14f2Osj-73h7rzcSf5Hmv4ASSKBMg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rosa, Annachiara</creator><creator>Pye, Valerie E</creator><creator>Graham, Carl</creator><creator>Muir, Luke</creator><creator>Seow, Jeffrey</creator><creator>Ng, Kevin W</creator><creator>Cook, Nicola J</creator><creator>Rees-Spear, Chloe</creator><creator>Parker, Eleanor</creator><creator>Dos Santos, Mariana Silva</creator><creator>Rosadas, Carolina</creator><creator>Susana, Alberto</creator><creator>Rhys, Hefin</creator><creator>Nans, Andrea</creator><creator>Masino, Laura</creator><creator>Roustan, Chloe</creator><creator>Christodoulou, Evangelos</creator><creator>Ulferts, Rachel</creator><creator>Wrobel, Antoni G</creator><creator>Short, Charlotte-Eve</creator><creator>Fertleman, Michael</creator><creator>Sanders, Rogier W</creator><creator>Heaney, Judith</creator><creator>Spyer, Moira</creator><creator>Kjær, Svend</creator><creator>Riddell, Andy</creator><creator>Malim, Michael H</creator><creator>Beale, Rupert</creator><creator>MacRae, James I</creator><creator>Taylor, Graham P</creator><creator>Nastouli, Eleni</creator><creator>van Gils, Marit J</creator><creator>Rosenthal, Peter B</creator><creator>Pizzato, Massimo</creator><creator>McClure, Myra O</creator><creator>Tedder, Richard S</creator><creator>Kassiotis, George</creator><creator>McCoy, Laura E</creator><creator>Doores, Katie J</creator><creator>Cherepanov, Peter</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9149-6029</orcidid><orcidid>https://orcid.org/0000-0002-7300-2432</orcidid><orcidid>https://orcid.org/0000-0002-3791-2447</orcidid><orcidid>https://orcid.org/0000-0002-3922-5667</orcidid><orcidid>https://orcid.org/0000-0002-9491-1483</orcidid><orcidid>https://orcid.org/0000-0002-6680-5587</orcidid><orcidid>https://orcid.org/0000-0002-4974-8824</orcidid><orcidid>https://orcid.org/0000-0002-5507-1725</orcidid><orcidid>https://orcid.org/0000-0003-3422-8161</orcidid><orcidid>https://orcid.org/0000-0002-2738-7976</orcidid><orcidid>https://orcid.org/0000-0003-0722-8561</orcidid><orcidid>https://orcid.org/0000-0002-1464-8583</orcidid><orcidid>https://orcid.org/0000-0002-6705-8560</orcidid><orcidid>https://orcid.org/0000-0002-5326-7003</orcidid><orcidid>https://orcid.org/0000-0002-8457-2633</orcidid><orcidid>https://orcid.org/0000-0002-0387-2862</orcidid><orcidid>https://orcid.org/0000-0003-2404-8490</orcidid><orcidid>https://orcid.org/0000-0002-2324-8573</orcidid><orcidid>https://orcid.org/0000-0002-4810-9115</orcidid><orcidid>https://orcid.org/0000-0001-7433-6357</orcidid><orcidid>https://orcid.org/0000-0001-9503-7946</orcidid><orcidid>https://orcid.org/0000-0002-8439-8997</orcidid><orcidid>https://orcid.org/0000-0001-9616-2992</orcidid><orcidid>https://orcid.org/0000-0002-7834-6066</orcidid><orcidid>https://orcid.org/0000-0002-3773-2390</orcidid><orcidid>https://orcid.org/0000-0002-9672-5721</orcidid><orcidid>https://orcid.org/0000-0002-0634-538X</orcidid><orcidid>https://orcid.org/0000-0001-9767-8683</orcidid><orcidid>https://orcid.org/0000-0003-1635-6768</orcidid><orcidid>https://orcid.org/0000-0003-4023-1156</orcidid></search><sort><creationdate>20210501</creationdate><title>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</title><author>Rosa, Annachiara ; Pye, Valerie E ; Graham, Carl ; Muir, Luke ; Seow, Jeffrey ; Ng, Kevin W ; Cook, Nicola J ; Rees-Spear, Chloe ; Parker, Eleanor ; Dos Santos, Mariana Silva ; Rosadas, Carolina ; Susana, Alberto ; Rhys, Hefin ; Nans, Andrea ; Masino, Laura ; Roustan, Chloe ; Christodoulou, Evangelos ; Ulferts, Rachel ; Wrobel, Antoni G ; Short, Charlotte-Eve ; Fertleman, Michael ; Sanders, Rogier W ; Heaney, Judith ; Spyer, Moira ; Kjær, Svend ; Riddell, Andy ; Malim, Michael H ; Beale, Rupert ; MacRae, James I ; Taylor, Graham P ; Nastouli, Eleni ; van Gils, Marit J ; Rosenthal, Peter B ; Pizzato, Massimo ; McClure, Myra O ; Tedder, Richard S ; Kassiotis, George ; McCoy, Laura E ; Doores, Katie J ; Cherepanov, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-560a91c8b3541771cb8b2f7acb08d72433d9c51e118934d6e8c6802c152a5bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Bilirubin - metabolism</topic><topic>Biliverdine - metabolism</topic><topic>Coronavirus</topic><topic>COVID-19 - immunology</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Epitopes</topic><topic>Heme - metabolism</topic><topic>Humans</topic><topic>Immune Sera</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>SARS-CoV-2 - immunology</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>SciAdv r-articles</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - immunology</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosa, Annachiara</creatorcontrib><creatorcontrib>Pye, Valerie E</creatorcontrib><creatorcontrib>Graham, Carl</creatorcontrib><creatorcontrib>Muir, Luke</creatorcontrib><creatorcontrib>Seow, Jeffrey</creatorcontrib><creatorcontrib>Ng, Kevin W</creatorcontrib><creatorcontrib>Cook, Nicola J</creatorcontrib><creatorcontrib>Rees-Spear, Chloe</creatorcontrib><creatorcontrib>Parker, Eleanor</creatorcontrib><creatorcontrib>Dos Santos, Mariana Silva</creatorcontrib><creatorcontrib>Rosadas, Carolina</creatorcontrib><creatorcontrib>Susana, Alberto</creatorcontrib><creatorcontrib>Rhys, Hefin</creatorcontrib><creatorcontrib>Nans, Andrea</creatorcontrib><creatorcontrib>Masino, Laura</creatorcontrib><creatorcontrib>Roustan, Chloe</creatorcontrib><creatorcontrib>Christodoulou, Evangelos</creatorcontrib><creatorcontrib>Ulferts, Rachel</creatorcontrib><creatorcontrib>Wrobel, Antoni G</creatorcontrib><creatorcontrib>Short, Charlotte-Eve</creatorcontrib><creatorcontrib>Fertleman, Michael</creatorcontrib><creatorcontrib>Sanders, Rogier W</creatorcontrib><creatorcontrib>Heaney, Judith</creatorcontrib><creatorcontrib>Spyer, Moira</creatorcontrib><creatorcontrib>Kjær, Svend</creatorcontrib><creatorcontrib>Riddell, Andy</creatorcontrib><creatorcontrib>Malim, Michael H</creatorcontrib><creatorcontrib>Beale, Rupert</creatorcontrib><creatorcontrib>MacRae, James I</creatorcontrib><creatorcontrib>Taylor, Graham P</creatorcontrib><creatorcontrib>Nastouli, Eleni</creatorcontrib><creatorcontrib>van Gils, Marit J</creatorcontrib><creatorcontrib>Rosenthal, Peter B</creatorcontrib><creatorcontrib>Pizzato, Massimo</creatorcontrib><creatorcontrib>McClure, Myra O</creatorcontrib><creatorcontrib>Tedder, Richard S</creatorcontrib><creatorcontrib>Kassiotis, George</creatorcontrib><creatorcontrib>McCoy, Laura E</creatorcontrib><creatorcontrib>Doores, Katie J</creatorcontrib><creatorcontrib>Cherepanov, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosa, Annachiara</au><au>Pye, Valerie E</au><au>Graham, Carl</au><au>Muir, Luke</au><au>Seow, Jeffrey</au><au>Ng, Kevin W</au><au>Cook, Nicola J</au><au>Rees-Spear, Chloe</au><au>Parker, Eleanor</au><au>Dos Santos, Mariana Silva</au><au>Rosadas, Carolina</au><au>Susana, Alberto</au><au>Rhys, Hefin</au><au>Nans, Andrea</au><au>Masino, Laura</au><au>Roustan, Chloe</au><au>Christodoulou, Evangelos</au><au>Ulferts, Rachel</au><au>Wrobel, Antoni G</au><au>Short, Charlotte-Eve</au><au>Fertleman, Michael</au><au>Sanders, Rogier W</au><au>Heaney, Judith</au><au>Spyer, Moira</au><au>Kjær, Svend</au><au>Riddell, Andy</au><au>Malim, Michael H</au><au>Beale, Rupert</au><au>MacRae, James I</au><au>Taylor, Graham P</au><au>Nastouli, Eleni</au><au>van Gils, Marit J</au><au>Rosenthal, Peter B</au><au>Pizzato, Massimo</au><au>McClure, Myra O</au><au>Tedder, Richard S</au><au>Kassiotis, George</au><au>McCoy, Laura E</au><au>Doores, Katie J</au><au>Cherepanov, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>7</volume><issue>22</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33888467</pmid><doi>10.1126/sciadv.abg7607</doi><orcidid>https://orcid.org/0000-0001-9149-6029</orcidid><orcidid>https://orcid.org/0000-0002-7300-2432</orcidid><orcidid>https://orcid.org/0000-0002-3791-2447</orcidid><orcidid>https://orcid.org/0000-0002-3922-5667</orcidid><orcidid>https://orcid.org/0000-0002-9491-1483</orcidid><orcidid>https://orcid.org/0000-0002-6680-5587</orcidid><orcidid>https://orcid.org/0000-0002-4974-8824</orcidid><orcidid>https://orcid.org/0000-0002-5507-1725</orcidid><orcidid>https://orcid.org/0000-0003-3422-8161</orcidid><orcidid>https://orcid.org/0000-0002-2738-7976</orcidid><orcidid>https://orcid.org/0000-0003-0722-8561</orcidid><orcidid>https://orcid.org/0000-0002-1464-8583</orcidid><orcidid>https://orcid.org/0000-0002-6705-8560</orcidid><orcidid>https://orcid.org/0000-0002-5326-7003</orcidid><orcidid>https://orcid.org/0000-0002-8457-2633</orcidid><orcidid>https://orcid.org/0000-0002-0387-2862</orcidid><orcidid>https://orcid.org/0000-0003-2404-8490</orcidid><orcidid>https://orcid.org/0000-0002-2324-8573</orcidid><orcidid>https://orcid.org/0000-0002-4810-9115</orcidid><orcidid>https://orcid.org/0000-0001-7433-6357</orcidid><orcidid>https://orcid.org/0000-0001-9503-7946</orcidid><orcidid>https://orcid.org/0000-0002-8439-8997</orcidid><orcidid>https://orcid.org/0000-0001-9616-2992</orcidid><orcidid>https://orcid.org/0000-0002-7834-6066</orcidid><orcidid>https://orcid.org/0000-0002-3773-2390</orcidid><orcidid>https://orcid.org/0000-0002-9672-5721</orcidid><orcidid>https://orcid.org/0000-0002-0634-538X</orcidid><orcidid>https://orcid.org/0000-0001-9767-8683</orcidid><orcidid>https://orcid.org/0000-0003-1635-6768</orcidid><orcidid>https://orcid.org/0000-0003-4023-1156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-05, Vol.7 (22) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163077 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Antibodies, Monoclonal - immunology Antibodies, Monoclonal - metabolism Antibodies, Neutralizing - immunology Bilirubin - metabolism Biliverdine - metabolism Coronavirus COVID-19 - immunology Cryoelectron Microscopy Crystallography, X-Ray Epitopes Heme - metabolism Humans Immune Sera Life Sciences Microbiology SARS-CoV-2 - immunology SARS-CoV-2 - pathogenicity SciAdv r-articles Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism |
title | SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20can%20recruit%20a%20heme%20metabolite%20to%20evade%20antibody%20immunity&rft.jtitle=Science%20advances&rft.au=Rosa,%20Annachiara&rft.date=2021-05-01&rft.volume=7&rft.issue=22&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abg7607&rft_dat=%3Cproquest_pubme%3E2518546824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518546824&rft_id=info:pmid/33888467&rfr_iscdi=true |