How relevant is the basic reproductive number computed during the coronavirus disease 2019 (COVID-19) pandemic, especially during lockdowns?

[...]in (b), the fourth secondary infection in (a), say, \({y_{24}}\) by primary infected \({y_2}\) becomes a primary infected that generates 3 secondary infections out of which only 2 were traced and diagnosed. [...]the mean number of secondary infections during (\({t_i}\), \({t_i+4}\)) is given by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection control and hospital epidemiology 2022-01, Vol.43 (1), p.125-127
Hauptverfasser: Srinivasa Rao, Arni S R, Krantz, Steven G, Bonsall, Michael B, Kurien, Thomas, Byrareddy, Siddappa N, Swanson, David A, Bhat, Ramesh, Sudhakar, Kurapati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 125
container_title Infection control and hospital epidemiology
container_volume 43
creator Srinivasa Rao, Arni S R
Krantz, Steven G
Bonsall, Michael B
Kurien, Thomas
Byrareddy, Siddappa N
Swanson, David A
Bhat, Ramesh
Sudhakar, Kurapati
description [...]in (b), the fourth secondary infection in (a), say, \({y_{24}}\) by primary infected \({y_2}\) becomes a primary infected that generates 3 secondary infections out of which only 2 were traced and diagnosed. [...]the mean number of secondary infections during (\({t_i}\), \({t_i+4}\)) is given by(2)\(\root 4 \of {\mathop \prod \limits_{k = 0}^3 \left( {1\, { + \, \gamma_{i + k}}\% } \right)}.\) Similarly, the trend in eq. Even if the testing numbers and testing patterns are constant over a period, the proportion of underreported cases may not be constant. [...]the estimation of \({R_0}\) is likely to be highly variable in any given situation. When the ratios \({Y_{i + k + 1}}{\rm{\;}}/{Y_{i + k}}\) for \(k = 0, 1, \ldots n\) are considered, then the geometric mean of these growth rates would be(4)\[\root n \of {\mathop \prod \limits_{k = 0}^n {{{Y_{i + k + 1}}} \over {{Y_{i + k}}} = \root n \of {{{Y_{i + n + 1}}} \over {{Y_i}}}.\] However, \[{\widehat R_0}\] or \[{\widehat R_t}\], (the estimated basic and time-varying reproductive numbers at the start or ongoing through an epidemic, respectively) may not be at all close to \({R_0}\) or \({R_t}\) even if the \({Y_i}\) values are generated from a mathematical model for a period \(i > 0\) that uses data on susceptible, exposed, infected, and recovered in which the underlying epidemiological processes are time varying.
doi_str_mv 10.1017/ice.2020.1376
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8160498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774951194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-124e64c80d52903153ddf5f1494392b5edc3d3577c30fc19ad56c0fa72a6bf3d3</originalsourceid><addsrcrecordid>eNpdkUtv1TAQRi0EorcXlmyRJTZFIsXPON6A0OXRSpW6AcTOcuxJ65LYqZ3cqv-hP5rcvgSsRjNz9GlGB6FXlBxSQtX74OCQEbZ0XNVP0IpKqau64eIpWpFG66ph_Nce2i_lghCitKbP0R7nnDRcyhW6OUpXOEMPWxsnHAqezgG3tgS3TMec_OymsAUc56GFjF0axnkCj_2cQzy7pV3KKdptyHPBPhSwBTAjVOODzenP488V1W_xaKOHIbh3GMoILti-v37I6JP77dNVLB9foGed7Qu8vK9r9OPrl--bo-rk9Nvx5tNJ5URDp4oyAbVwDfGSacKp5N53sqNCC65ZK8E77rlUynHSOaqtl7UjnVXM1m23rNbow13uOLfDQkOcsu3NmMNg87VJNph_NzGcm7O0NQ2tidDNEnBwH5DT5QxlMkMoDvreRkhzMUwoQnhdLwet0Zv_0Is057i8Z5hSQktKb6nqjnI5lZKhezyGErPzbBbPZufZ7Dwv_Ou_P3ikH8TyP6wbpSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774951194</pqid></control><display><type>article</type><title>How relevant is the basic reproductive number computed during the coronavirus disease 2019 (COVID-19) pandemic, especially during lockdowns?</title><source>ProQuest Central Essentials</source><source>MEDLINE</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><source>Cambridge University Press Journals Complete</source><creator>Srinivasa Rao, Arni S R ; Krantz, Steven G ; Bonsall, Michael B ; Kurien, Thomas ; Byrareddy, Siddappa N ; Swanson, David A ; Bhat, Ramesh ; Sudhakar, Kurapati</creator><creatorcontrib>Srinivasa Rao, Arni S R ; Krantz, Steven G ; Bonsall, Michael B ; Kurien, Thomas ; Byrareddy, Siddappa N ; Swanson, David A ; Bhat, Ramesh ; Sudhakar, Kurapati</creatorcontrib><description>[...]in (b), the fourth secondary infection in (a), say, \({y_{24}}\) by primary infected \({y_2}\) becomes a primary infected that generates 3 secondary infections out of which only 2 were traced and diagnosed. [...]the mean number of secondary infections during (\({t_i}\), \({t_i+4}\)) is given by(2)\(\root 4 \of {\mathop \prod \limits_{k = 0}^3 \left( {1\, { + \, \gamma_{i + k}}\% } \right)}.\) Similarly, the trend in eq. Even if the testing numbers and testing patterns are constant over a period, the proportion of underreported cases may not be constant. [...]the estimation of \({R_0}\) is likely to be highly variable in any given situation. When the ratios \({Y_{i + k + 1}}{\rm{\;}}/{Y_{i + k}}\) for \(k = 0, 1, \ldots n\) are considered, then the geometric mean of these growth rates would be(4)\[\root n \of {\mathop \prod \limits_{k = 0}^n {{{Y_{i + k + 1}}} \over {{Y_{i + k}}} = \root n \of {{{Y_{i + n + 1}}} \over {{Y_i}}}.\] However, \[{\widehat R_0}\] or \[{\widehat R_t}\], (the estimated basic and time-varying reproductive numbers at the start or ongoing through an epidemic, respectively) may not be at all close to \({R_0}\) or \({R_t}\) even if the \({Y_i}\) values are generated from a mathematical model for a period \(i &gt; 0\) that uses data on susceptible, exposed, infected, and recovered in which the underlying epidemiological processes are time varying.</description><identifier>ISSN: 0899-823X</identifier><identifier>EISSN: 1559-6834</identifier><identifier>DOI: 10.1017/ice.2020.1376</identifier><identifier>PMID: 33308355</identifier><language>eng</language><publisher>United States: Cambridge University Press</publisher><subject>Basic Reproduction Number ; Communicable Disease Control ; Coronaviruses ; COVID-19 ; Epidemics ; Epidemiology ; Humans ; Infections ; Letter to the Editor ; Pandemics ; SARS-CoV-2 ; Vitamin E</subject><ispartof>Infection control and hospital epidemiology, 2022-01, Vol.43 (1), p.125-127</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Society for Healthcare Epidemiology of America 2020 2020 The Society for Healthcare Epidemiology of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-124e64c80d52903153ddf5f1494392b5edc3d3577c30fc19ad56c0fa72a6bf3d3</citedby><cites>FETCH-LOGICAL-c481t-124e64c80d52903153ddf5f1494392b5edc3d3577c30fc19ad56c0fa72a6bf3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774951194/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774951194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21368,21369,23236,27903,27904,33509,33510,33682,33683,33723,33724,43638,43766,43784,64362,64364,64366,72216,73851,74030,74049</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33308355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasa Rao, Arni S R</creatorcontrib><creatorcontrib>Krantz, Steven G</creatorcontrib><creatorcontrib>Bonsall, Michael B</creatorcontrib><creatorcontrib>Kurien, Thomas</creatorcontrib><creatorcontrib>Byrareddy, Siddappa N</creatorcontrib><creatorcontrib>Swanson, David A</creatorcontrib><creatorcontrib>Bhat, Ramesh</creatorcontrib><creatorcontrib>Sudhakar, Kurapati</creatorcontrib><title>How relevant is the basic reproductive number computed during the coronavirus disease 2019 (COVID-19) pandemic, especially during lockdowns?</title><title>Infection control and hospital epidemiology</title><addtitle>Infect Control Hosp Epidemiol</addtitle><description>[...]in (b), the fourth secondary infection in (a), say, \({y_{24}}\) by primary infected \({y_2}\) becomes a primary infected that generates 3 secondary infections out of which only 2 were traced and diagnosed. [...]the mean number of secondary infections during (\({t_i}\), \({t_i+4}\)) is given by(2)\(\root 4 \of {\mathop \prod \limits_{k = 0}^3 \left( {1\, { + \, \gamma_{i + k}}\% } \right)}.\) Similarly, the trend in eq. Even if the testing numbers and testing patterns are constant over a period, the proportion of underreported cases may not be constant. [...]the estimation of \({R_0}\) is likely to be highly variable in any given situation. When the ratios \({Y_{i + k + 1}}{\rm{\;}}/{Y_{i + k}}\) for \(k = 0, 1, \ldots n\) are considered, then the geometric mean of these growth rates would be(4)\[\root n \of {\mathop \prod \limits_{k = 0}^n {{{Y_{i + k + 1}}} \over {{Y_{i + k}}} = \root n \of {{{Y_{i + n + 1}}} \over {{Y_i}}}.\] However, \[{\widehat R_0}\] or \[{\widehat R_t}\], (the estimated basic and time-varying reproductive numbers at the start or ongoing through an epidemic, respectively) may not be at all close to \({R_0}\) or \({R_t}\) even if the \({Y_i}\) values are generated from a mathematical model for a period \(i &gt; 0\) that uses data on susceptible, exposed, infected, and recovered in which the underlying epidemiological processes are time varying.</description><subject>Basic Reproduction Number</subject><subject>Communicable Disease Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Letter to the Editor</subject><subject>Pandemics</subject><subject>SARS-CoV-2</subject><subject>Vitamin E</subject><issn>0899-823X</issn><issn>1559-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkUtv1TAQRi0EorcXlmyRJTZFIsXPON6A0OXRSpW6AcTOcuxJ65LYqZ3cqv-hP5rcvgSsRjNz9GlGB6FXlBxSQtX74OCQEbZ0XNVP0IpKqau64eIpWpFG66ph_Nce2i_lghCitKbP0R7nnDRcyhW6OUpXOEMPWxsnHAqezgG3tgS3TMec_OymsAUc56GFjF0axnkCj_2cQzy7pV3KKdptyHPBPhSwBTAjVOODzenP488V1W_xaKOHIbh3GMoILti-v37I6JP77dNVLB9foGed7Qu8vK9r9OPrl--bo-rk9Nvx5tNJ5URDp4oyAbVwDfGSacKp5N53sqNCC65ZK8E77rlUynHSOaqtl7UjnVXM1m23rNbow13uOLfDQkOcsu3NmMNg87VJNph_NzGcm7O0NQ2tidDNEnBwH5DT5QxlMkMoDvreRkhzMUwoQnhdLwet0Zv_0Is057i8Z5hSQktKb6nqjnI5lZKhezyGErPzbBbPZufZ7Dwv_Ou_P3ikH8TyP6wbpSI</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Srinivasa Rao, Arni S R</creator><creator>Krantz, Steven G</creator><creator>Bonsall, Michael B</creator><creator>Kurien, Thomas</creator><creator>Byrareddy, Siddappa N</creator><creator>Swanson, David A</creator><creator>Bhat, Ramesh</creator><creator>Sudhakar, Kurapati</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220101</creationdate><title>How relevant is the basic reproductive number computed during the coronavirus disease 2019 (COVID-19) pandemic, especially during lockdowns?</title><author>Srinivasa Rao, Arni S R ; Krantz, Steven G ; Bonsall, Michael B ; Kurien, Thomas ; Byrareddy, Siddappa N ; Swanson, David A ; Bhat, Ramesh ; Sudhakar, Kurapati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-124e64c80d52903153ddf5f1494392b5edc3d3577c30fc19ad56c0fa72a6bf3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basic Reproduction Number</topic><topic>Communicable Disease Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Letter to the Editor</topic><topic>Pandemics</topic><topic>SARS-CoV-2</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasa Rao, Arni S R</creatorcontrib><creatorcontrib>Krantz, Steven G</creatorcontrib><creatorcontrib>Bonsall, Michael B</creatorcontrib><creatorcontrib>Kurien, Thomas</creatorcontrib><creatorcontrib>Byrareddy, Siddappa N</creatorcontrib><creatorcontrib>Swanson, David A</creatorcontrib><creatorcontrib>Bhat, Ramesh</creatorcontrib><creatorcontrib>Sudhakar, Kurapati</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection control and hospital epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasa Rao, Arni S R</au><au>Krantz, Steven G</au><au>Bonsall, Michael B</au><au>Kurien, Thomas</au><au>Byrareddy, Siddappa N</au><au>Swanson, David A</au><au>Bhat, Ramesh</au><au>Sudhakar, Kurapati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How relevant is the basic reproductive number computed during the coronavirus disease 2019 (COVID-19) pandemic, especially during lockdowns?</atitle><jtitle>Infection control and hospital epidemiology</jtitle><addtitle>Infect Control Hosp Epidemiol</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>125</spage><epage>127</epage><pages>125-127</pages><issn>0899-823X</issn><eissn>1559-6834</eissn><abstract>[...]in (b), the fourth secondary infection in (a), say, \({y_{24}}\) by primary infected \({y_2}\) becomes a primary infected that generates 3 secondary infections out of which only 2 were traced and diagnosed. [...]the mean number of secondary infections during (\({t_i}\), \({t_i+4}\)) is given by(2)\(\root 4 \of {\mathop \prod \limits_{k = 0}^3 \left( {1\, { + \, \gamma_{i + k}}\% } \right)}.\) Similarly, the trend in eq. Even if the testing numbers and testing patterns are constant over a period, the proportion of underreported cases may not be constant. [...]the estimation of \({R_0}\) is likely to be highly variable in any given situation. When the ratios \({Y_{i + k + 1}}{\rm{\;}}/{Y_{i + k}}\) for \(k = 0, 1, \ldots n\) are considered, then the geometric mean of these growth rates would be(4)\[\root n \of {\mathop \prod \limits_{k = 0}^n {{{Y_{i + k + 1}}} \over {{Y_{i + k}}} = \root n \of {{{Y_{i + n + 1}}} \over {{Y_i}}}.\] However, \[{\widehat R_0}\] or \[{\widehat R_t}\], (the estimated basic and time-varying reproductive numbers at the start or ongoing through an epidemic, respectively) may not be at all close to \({R_0}\) or \({R_t}\) even if the \({Y_i}\) values are generated from a mathematical model for a period \(i &gt; 0\) that uses data on susceptible, exposed, infected, and recovered in which the underlying epidemiological processes are time varying.</abstract><cop>United States</cop><pub>Cambridge University Press</pub><pmid>33308355</pmid><doi>10.1017/ice.2020.1376</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-823X
ispartof Infection control and hospital epidemiology, 2022-01, Vol.43 (1), p.125-127
issn 0899-823X
1559-6834
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8160498
source ProQuest Central Essentials; MEDLINE; ProQuest Central (Alumni Edition); ProQuest Central UK/Ireland; ProQuest Central; Cambridge University Press Journals Complete
subjects Basic Reproduction Number
Communicable Disease Control
Coronaviruses
COVID-19
Epidemics
Epidemiology
Humans
Infections
Letter to the Editor
Pandemics
SARS-CoV-2
Vitamin E
title How relevant is the basic reproductive number computed during the coronavirus disease 2019 (COVID-19) pandemic, especially during lockdowns?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20relevant%20is%20the%20basic%20reproductive%20number%20computed%20during%20the%20coronavirus%20disease%202019%20(COVID-19)%20pandemic,%20especially%20during%20lockdowns?&rft.jtitle=Infection%20control%20and%20hospital%20epidemiology&rft.au=Srinivasa%20Rao,%20Arni%20S%20R&rft.date=2022-01-01&rft.volume=43&rft.issue=1&rft.spage=125&rft.epage=127&rft.pages=125-127&rft.issn=0899-823X&rft.eissn=1559-6834&rft_id=info:doi/10.1017/ice.2020.1376&rft_dat=%3Cproquest_pubme%3E2774951194%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774951194&rft_id=info:pmid/33308355&rfr_iscdi=true