Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma
Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype,...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2021-06, Vol.131 (11), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 131 |
creator | Loong, Jane Hc Wong, Tin-Lok Tong, Man Sharma, Rakesh Zhou, Lei Ng, Kai-Yu Yu, Hua-Jian Li, Chi-Han Man, Kwan Lo, Chung-Mau Guan, Xin-Yuan Lee, Terence K Yun, Jing-Ping Ma, Stephanie Ky |
description | Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype, especially in the innermost tumor regions. Here, we report a regulatory mechanism involving fucosylation by which glucose restriction promotes cancer stemness to drive drug resistance and tumor recurrence. Using hepatocellular carcinoma (HCC) as a model, we showed that restricted glucose availability enhanced the PERK/eIF2α/ATF4 signaling axis to drive fucosyltransferase 1 (FUT1) transcription via direct binding of ATF4 to the FUT1 promoter. FUT1 overexpression is a poor prognostic indicator for HCC. FUT1 inhibition could mitigate tumor initiation, self-renewal, and drug resistance. Mechanistically, we demonstrated that CD147, ICAM-1, EGFR, and EPHA2 are glycoprotein targets of FUT1, in which such fucosylation would consequently converge on deregulated AKT/mTOR/4EBP1 signaling to drive cancer stemness. Treatment with an α-(1,2)-fucosylation inhibitor sensitized HCC tumors to sorafenib, a first-line molecularly targeted drug used for advanced HCC patients, and reduced the tumor-initiating subset. FUT1 overexpression and/or CD147, ICAM-1, EGFR, and EPHA2 fucosylation may be good prognostic markers and therapeutic targets for cancer patients. |
doi_str_mv | 10.1172/JCI143377 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664447463</galeid><sourcerecordid>A664447463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-a92f969079991b698a99ae2cc0ff2d2446398cb7beed9b3e780019ef90e382b53</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbK0--AVkQBB9mDr5MzPJi1AWW1cKBW19DZnMzW5KJlmTTLHf3ozWdVf2QfKQcPO7J_eQUxQvUX2KUIfff14sESWk6x4Vx6hpWMUwYY93zkfFsxhv6xpR2tCnxREhrGM1ocdFuLCT8hHKATbB3MlkvKuMGyYFQyl7CEG6VJ7fXKNqhMHIlMt67ri3v9hyyF0QSyWdglDGBKODGEvjyjVsZPIKrJ2sDJkIyjg_yufFEy1thBcP-0lxc_7xevGpury6WC7OLivV0i5VkmPNW153nHPUt5xJziVgpWqt8YApbQlnqu96gIH3BLKhGnHQvAbCcN-Qk-LDb93N1OfZFbgUpBXZ5ijDvfDSiP0bZ9Zi5e8EQw1v2Szw9kEg-O8TxCRGE2c_0oGfosANajFGjNGMvv4HvfVTcNlepkjbNIQR9JdaSQvCOO3zu2oWFWdtSyntsqlMVQeoFTjIQ3oH2uTyHn96gM9rgNGogw3v9hoyk-BHWskpRrH8-uX_2atv--ybHXYN0qZ19HaacxIPiqrgYwygt5-CajEnWmwTndlXu7-4Jf9EmPwEPuDuaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536553831</pqid></control><display><type>article</type><title>Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Loong, Jane Hc ; Wong, Tin-Lok ; Tong, Man ; Sharma, Rakesh ; Zhou, Lei ; Ng, Kai-Yu ; Yu, Hua-Jian ; Li, Chi-Han ; Man, Kwan ; Lo, Chung-Mau ; Guan, Xin-Yuan ; Lee, Terence K ; Yun, Jing-Ping ; Ma, Stephanie Ky</creator><creatorcontrib>Loong, Jane Hc ; Wong, Tin-Lok ; Tong, Man ; Sharma, Rakesh ; Zhou, Lei ; Ng, Kai-Yu ; Yu, Hua-Jian ; Li, Chi-Han ; Man, Kwan ; Lo, Chung-Mau ; Guan, Xin-Yuan ; Lee, Terence K ; Yun, Jing-Ping ; Ma, Stephanie Ky</creatorcontrib><description>Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype, especially in the innermost tumor regions. Here, we report a regulatory mechanism involving fucosylation by which glucose restriction promotes cancer stemness to drive drug resistance and tumor recurrence. Using hepatocellular carcinoma (HCC) as a model, we showed that restricted glucose availability enhanced the PERK/eIF2α/ATF4 signaling axis to drive fucosyltransferase 1 (FUT1) transcription via direct binding of ATF4 to the FUT1 promoter. FUT1 overexpression is a poor prognostic indicator for HCC. FUT1 inhibition could mitigate tumor initiation, self-renewal, and drug resistance. Mechanistically, we demonstrated that CD147, ICAM-1, EGFR, and EPHA2 are glycoprotein targets of FUT1, in which such fucosylation would consequently converge on deregulated AKT/mTOR/4EBP1 signaling to drive cancer stemness. Treatment with an α-(1,2)-fucosylation inhibitor sensitized HCC tumors to sorafenib, a first-line molecularly targeted drug used for advanced HCC patients, and reduced the tumor-initiating subset. FUT1 overexpression and/or CD147, ICAM-1, EGFR, and EPHA2 fucosylation may be good prognostic markers and therapeutic targets for cancer patients.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI143377</identifier><identifier>PMID: 33878034</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adaptation ; AKT protein ; Animals ; Binding sites ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Biomedical research ; Cancer therapies ; Carcinoma, Hepatocellular - diagnosis ; Carcinoma, Hepatocellular - enzymology ; Carcinoma, Hepatocellular - genetics ; CD147 antigen ; Cell self-renewal ; Clonal selection ; Cytotoxicity ; Development and progression ; Drug resistance ; EphA2 protein ; Epidermal growth factor receptors ; Fucosyltransferases - genetics ; Fucosyltransferases - metabolism ; Galactoside 2-a-L-fucosyltransferase ; Galactoside 2-alpha-L-fucosyltransferase ; Genes ; Genetic aspects ; Genotype & phenotype ; Glucose ; Glucose - metabolism ; Glucose - pharmacology ; Glycoproteins ; Glycosylation ; Health aspects ; Hep G2 Cells ; Hepatocellular carcinoma ; Hepatoma ; Humans ; Hypoxia ; Intercellular adhesion molecule 1 ; Liver cancer ; Liver Neoplasms, Experimental - diagnosis ; Liver Neoplasms, Experimental - enzymology ; Liver Neoplasms, Experimental - genetics ; Mice ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplastic Stem Cells - enzymology ; Neoplastic Stem Cells - pathology ; Phenotypes ; Physiological aspects ; Physiology ; Prognosis ; Proteins ; Targeted cancer therapy ; Therapeutic targets ; TOR protein ; Transcription ; Transcription factors ; Transferases ; Tumor cells ; Tumors ; Vascularization</subject><ispartof>The Journal of clinical investigation, 2021-06, Vol.131 (11), p.1-14</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jun 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-a92f969079991b698a99ae2cc0ff2d2446398cb7beed9b3e780019ef90e382b53</citedby><cites>FETCH-LOGICAL-c647t-a92f969079991b698a99ae2cc0ff2d2446398cb7beed9b3e780019ef90e382b53</cites><orcidid>0000-0002-3594-8956 ; 0000-0003-0682-322X ; 0000-0001-5725-0391 ; 0000-0001-5663-6866 ; 0000-0001-8718-6677 ; 0000-0003-1147-7958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159685/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159685/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33878034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loong, Jane Hc</creatorcontrib><creatorcontrib>Wong, Tin-Lok</creatorcontrib><creatorcontrib>Tong, Man</creatorcontrib><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Ng, Kai-Yu</creatorcontrib><creatorcontrib>Yu, Hua-Jian</creatorcontrib><creatorcontrib>Li, Chi-Han</creatorcontrib><creatorcontrib>Man, Kwan</creatorcontrib><creatorcontrib>Lo, Chung-Mau</creatorcontrib><creatorcontrib>Guan, Xin-Yuan</creatorcontrib><creatorcontrib>Lee, Terence K</creatorcontrib><creatorcontrib>Yun, Jing-Ping</creatorcontrib><creatorcontrib>Ma, Stephanie Ky</creatorcontrib><title>Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype, especially in the innermost tumor regions. Here, we report a regulatory mechanism involving fucosylation by which glucose restriction promotes cancer stemness to drive drug resistance and tumor recurrence. Using hepatocellular carcinoma (HCC) as a model, we showed that restricted glucose availability enhanced the PERK/eIF2α/ATF4 signaling axis to drive fucosyltransferase 1 (FUT1) transcription via direct binding of ATF4 to the FUT1 promoter. FUT1 overexpression is a poor prognostic indicator for HCC. FUT1 inhibition could mitigate tumor initiation, self-renewal, and drug resistance. Mechanistically, we demonstrated that CD147, ICAM-1, EGFR, and EPHA2 are glycoprotein targets of FUT1, in which such fucosylation would consequently converge on deregulated AKT/mTOR/4EBP1 signaling to drive cancer stemness. Treatment with an α-(1,2)-fucosylation inhibitor sensitized HCC tumors to sorafenib, a first-line molecularly targeted drug used for advanced HCC patients, and reduced the tumor-initiating subset. FUT1 overexpression and/or CD147, ICAM-1, EGFR, and EPHA2 fucosylation may be good prognostic markers and therapeutic targets for cancer patients.</description><subject>Adaptation</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Biomedical research</subject><subject>Cancer therapies</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Carcinoma, Hepatocellular - enzymology</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>CD147 antigen</subject><subject>Cell self-renewal</subject><subject>Clonal selection</subject><subject>Cytotoxicity</subject><subject>Development and progression</subject><subject>Drug resistance</subject><subject>EphA2 protein</subject><subject>Epidermal growth factor receptors</subject><subject>Fucosyltransferases - genetics</subject><subject>Fucosyltransferases - metabolism</subject><subject>Galactoside 2-a-L-fucosyltransferase</subject><subject>Galactoside 2-alpha-L-fucosyltransferase</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genotype & phenotype</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Health aspects</subject><subject>Hep G2 Cells</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Intercellular adhesion molecule 1</subject><subject>Liver cancer</subject><subject>Liver Neoplasms, Experimental - diagnosis</subject><subject>Liver Neoplasms, Experimental - enzymology</subject><subject>Liver Neoplasms, Experimental - genetics</subject><subject>Mice</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplastic Stem Cells - enzymology</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Targeted cancer therapy</subject><subject>Therapeutic targets</subject><subject>TOR protein</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transferases</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Vascularization</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl9rFDEUxQdRbK0--AVkQBB9mDr5MzPJi1AWW1cKBW19DZnMzW5KJlmTTLHf3ozWdVf2QfKQcPO7J_eQUxQvUX2KUIfff14sESWk6x4Vx6hpWMUwYY93zkfFsxhv6xpR2tCnxREhrGM1ocdFuLCT8hHKATbB3MlkvKuMGyYFQyl7CEG6VJ7fXKNqhMHIlMt67ri3v9hyyF0QSyWdglDGBKODGEvjyjVsZPIKrJ2sDJkIyjg_yufFEy1thBcP-0lxc_7xevGpury6WC7OLivV0i5VkmPNW153nHPUt5xJziVgpWqt8YApbQlnqu96gIH3BLKhGnHQvAbCcN-Qk-LDb93N1OfZFbgUpBXZ5ijDvfDSiP0bZ9Zi5e8EQw1v2Szw9kEg-O8TxCRGE2c_0oGfosANajFGjNGMvv4HvfVTcNlepkjbNIQR9JdaSQvCOO3zu2oWFWdtSyntsqlMVQeoFTjIQ3oH2uTyHn96gM9rgNGogw3v9hoyk-BHWskpRrH8-uX_2atv--ybHXYN0qZ19HaacxIPiqrgYwygt5-CajEnWmwTndlXu7-4Jf9EmPwEPuDuaA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Loong, Jane Hc</creator><creator>Wong, Tin-Lok</creator><creator>Tong, Man</creator><creator>Sharma, Rakesh</creator><creator>Zhou, Lei</creator><creator>Ng, Kai-Yu</creator><creator>Yu, Hua-Jian</creator><creator>Li, Chi-Han</creator><creator>Man, Kwan</creator><creator>Lo, Chung-Mau</creator><creator>Guan, Xin-Yuan</creator><creator>Lee, Terence K</creator><creator>Yun, Jing-Ping</creator><creator>Ma, Stephanie Ky</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3594-8956</orcidid><orcidid>https://orcid.org/0000-0003-0682-322X</orcidid><orcidid>https://orcid.org/0000-0001-5725-0391</orcidid><orcidid>https://orcid.org/0000-0001-5663-6866</orcidid><orcidid>https://orcid.org/0000-0001-8718-6677</orcidid><orcidid>https://orcid.org/0000-0003-1147-7958</orcidid></search><sort><creationdate>20210601</creationdate><title>Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma</title><author>Loong, Jane Hc ; Wong, Tin-Lok ; Tong, Man ; Sharma, Rakesh ; Zhou, Lei ; Ng, Kai-Yu ; Yu, Hua-Jian ; Li, Chi-Han ; Man, Kwan ; Lo, Chung-Mau ; Guan, Xin-Yuan ; Lee, Terence K ; Yun, Jing-Ping ; Ma, Stephanie Ky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-a92f969079991b698a99ae2cc0ff2d2446398cb7beed9b3e780019ef90e382b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Biomedical research</topic><topic>Cancer therapies</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Carcinoma, Hepatocellular - enzymology</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>CD147 antigen</topic><topic>Cell self-renewal</topic><topic>Clonal selection</topic><topic>Cytotoxicity</topic><topic>Development and progression</topic><topic>Drug resistance</topic><topic>EphA2 protein</topic><topic>Epidermal growth factor receptors</topic><topic>Fucosyltransferases - genetics</topic><topic>Fucosyltransferases - metabolism</topic><topic>Galactoside 2-a-L-fucosyltransferase</topic><topic>Galactoside 2-alpha-L-fucosyltransferase</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genotype & phenotype</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Health aspects</topic><topic>Hep G2 Cells</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Intercellular adhesion molecule 1</topic><topic>Liver cancer</topic><topic>Liver Neoplasms, Experimental - diagnosis</topic><topic>Liver Neoplasms, Experimental - enzymology</topic><topic>Liver Neoplasms, Experimental - genetics</topic><topic>Mice</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplastic Stem Cells - enzymology</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Targeted cancer therapy</topic><topic>Therapeutic targets</topic><topic>TOR protein</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transferases</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loong, Jane Hc</creatorcontrib><creatorcontrib>Wong, Tin-Lok</creatorcontrib><creatorcontrib>Tong, Man</creatorcontrib><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Ng, Kai-Yu</creatorcontrib><creatorcontrib>Yu, Hua-Jian</creatorcontrib><creatorcontrib>Li, Chi-Han</creatorcontrib><creatorcontrib>Man, Kwan</creatorcontrib><creatorcontrib>Lo, Chung-Mau</creatorcontrib><creatorcontrib>Guan, Xin-Yuan</creatorcontrib><creatorcontrib>Lee, Terence K</creatorcontrib><creatorcontrib>Yun, Jing-Ping</creatorcontrib><creatorcontrib>Ma, Stephanie Ky</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loong, Jane Hc</au><au>Wong, Tin-Lok</au><au>Tong, Man</au><au>Sharma, Rakesh</au><au>Zhou, Lei</au><au>Ng, Kai-Yu</au><au>Yu, Hua-Jian</au><au>Li, Chi-Han</au><au>Man, Kwan</au><au>Lo, Chung-Mau</au><au>Guan, Xin-Yuan</au><au>Lee, Terence K</au><au>Yun, Jing-Ping</au><au>Ma, Stephanie Ky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>131</volume><issue>11</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype, especially in the innermost tumor regions. Here, we report a regulatory mechanism involving fucosylation by which glucose restriction promotes cancer stemness to drive drug resistance and tumor recurrence. Using hepatocellular carcinoma (HCC) as a model, we showed that restricted glucose availability enhanced the PERK/eIF2α/ATF4 signaling axis to drive fucosyltransferase 1 (FUT1) transcription via direct binding of ATF4 to the FUT1 promoter. FUT1 overexpression is a poor prognostic indicator for HCC. FUT1 inhibition could mitigate tumor initiation, self-renewal, and drug resistance. Mechanistically, we demonstrated that CD147, ICAM-1, EGFR, and EPHA2 are glycoprotein targets of FUT1, in which such fucosylation would consequently converge on deregulated AKT/mTOR/4EBP1 signaling to drive cancer stemness. Treatment with an α-(1,2)-fucosylation inhibitor sensitized HCC tumors to sorafenib, a first-line molecularly targeted drug used for advanced HCC patients, and reduced the tumor-initiating subset. FUT1 overexpression and/or CD147, ICAM-1, EGFR, and EPHA2 fucosylation may be good prognostic markers and therapeutic targets for cancer patients.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>33878034</pmid><doi>10.1172/JCI143377</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3594-8956</orcidid><orcidid>https://orcid.org/0000-0003-0682-322X</orcidid><orcidid>https://orcid.org/0000-0001-5725-0391</orcidid><orcidid>https://orcid.org/0000-0001-5663-6866</orcidid><orcidid>https://orcid.org/0000-0001-8718-6677</orcidid><orcidid>https://orcid.org/0000-0003-1147-7958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2021-06, Vol.131 (11), p.1-14 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159685 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adaptation AKT protein Animals Binding sites Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Biomedical research Cancer therapies Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - enzymology Carcinoma, Hepatocellular - genetics CD147 antigen Cell self-renewal Clonal selection Cytotoxicity Development and progression Drug resistance EphA2 protein Epidermal growth factor receptors Fucosyltransferases - genetics Fucosyltransferases - metabolism Galactoside 2-a-L-fucosyltransferase Galactoside 2-alpha-L-fucosyltransferase Genes Genetic aspects Genotype & phenotype Glucose Glucose - metabolism Glucose - pharmacology Glycoproteins Glycosylation Health aspects Hep G2 Cells Hepatocellular carcinoma Hepatoma Humans Hypoxia Intercellular adhesion molecule 1 Liver cancer Liver Neoplasms, Experimental - diagnosis Liver Neoplasms, Experimental - enzymology Liver Neoplasms, Experimental - genetics Mice Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Neoplastic Stem Cells - enzymology Neoplastic Stem Cells - pathology Phenotypes Physiological aspects Physiology Prognosis Proteins Targeted cancer therapy Therapeutic targets TOR protein Transcription Transcription factors Transferases Tumor cells Tumors Vascularization |
title | Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20deprivation-induced%20aberrant%20FUT1-mediated%20fucosylation%20drives%20cancer%20stemness%20in%20hepatocellular%20carcinoma&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Loong,%20Jane%20Hc&rft.date=2021-06-01&rft.volume=131&rft.issue=11&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI143377&rft_dat=%3Cgale_pubme%3EA664447463%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536553831&rft_id=info:pmid/33878034&rft_galeid=A664447463&rfr_iscdi=true |