Development of human white matter pathways in utero over the second and third trimester

During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (20), p.1-7
Hauptverfasser: Wilson, Siân, Pietsch, Maximilian, Cordero-Grande, Lucilio, Price, Anthony N., Hutter, Jana, Xiao, Jiaxin, McCabe, Laura, Rutherford, Mary A., Hughes, Emer J., Counsell, Serena J., Tournier, Jacques-Donald, Arichi, Tomoki, Hajnal, Joseph V., Edwards, A. David, Christiaens, Daan, O’Muircheartaigh, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 20
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Wilson, Siân
Pietsch, Maximilian
Cordero-Grande, Lucilio
Price, Anthony N.
Hutter, Jana
Xiao, Jiaxin
McCabe, Laura
Rutherford, Mary A.
Hughes, Emer J.
Counsell, Serena J.
Tournier, Jacques-Donald
Arichi, Tomoki
Hajnal, Joseph V.
Edwards, A. David
Christiaens, Daan
O’Muircheartaigh, Jonathan
description During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.
doi_str_mv 10.1073/pnas.2023598118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040443</jstor_id><sourcerecordid>27040443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVIabZpzzk1CHrpxcnoa21fAiX9hEAvLT2KWVmOvdiWI8kb8t93wqabtgdJMPPT4808xs4EXAgo1eU8YbqQIJWpKyGqI7YSUItirWs4ZisAWRaVlvqEvUppCwC1qeAlO1GqLqVWZsV-ffQ7P4R59FPmoeXdMuLE77s-ez5izj7yGXN3jw-J9xNfqBB42FE5d54n78LUcKSTuz7SHfvRJ4JesxctDsm_eXpP2c_Pn35cfy1uvn_5dv3hpnBaq1zIRkoH61KUsHFatq1qpTPSOFBIZkE6bNEIRO9kI3BtGqcEVHoDTes2WKpTdrXXnZfN6BtHY0Qc7Ew-MD7YgL39tzP1nb0NO1sJU9YKSOD9k0AMdwt5t2OfnB8GnHxYkpXkZm2krAyh7_5Dt2GJE41HlAIjlAFF1OWecjGkFH17MCPAPoZmH0Ozz6HRj_O_Zzjwf1Ii4O0e2KYc4qEvS9BAa1S_ARqVnk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530513503</pqid></control><display><type>article</type><title>Development of human white matter pathways in utero over the second and third trimester</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wilson, Siân ; Pietsch, Maximilian ; Cordero-Grande, Lucilio ; Price, Anthony N. ; Hutter, Jana ; Xiao, Jiaxin ; McCabe, Laura ; Rutherford, Mary A. ; Hughes, Emer J. ; Counsell, Serena J. ; Tournier, Jacques-Donald ; Arichi, Tomoki ; Hajnal, Joseph V. ; Edwards, A. David ; Christiaens, Daan ; O’Muircheartaigh, Jonathan</creator><creatorcontrib>Wilson, Siân ; Pietsch, Maximilian ; Cordero-Grande, Lucilio ; Price, Anthony N. ; Hutter, Jana ; Xiao, Jiaxin ; McCabe, Laura ; Rutherford, Mary A. ; Hughes, Emer J. ; Counsell, Serena J. ; Tournier, Jacques-Donald ; Arichi, Tomoki ; Hajnal, Joseph V. ; Edwards, A. David ; Christiaens, Daan ; O’Muircheartaigh, Jonathan</creatorcontrib><description>During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023598118</identifier><identifier>PMID: 33972435</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abnormalities ; Anisotropy ; Biological Sciences ; Cell migration ; Cerebral Cortex - anatomy &amp; histology ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Connectome ; Corpus callosum ; Corpus Callosum - anatomy &amp; histology ; Corpus Callosum - diagnostic imaging ; Corpus Callosum - physiology ; Data acquisition ; Diffusion Tensor Imaging ; Female ; Fetal Development - physiology ; Fetus ; Fetuses ; Fibers ; Gestation ; Gestational Age ; Human motion ; Humans ; Infant ; Infant, Newborn ; Magnetic resonance imaging ; Maturation ; Microstructure ; Myelination ; Neural networks ; Neurodevelopment ; Neurogenesis - physiology ; Neurons - cytology ; Neurons - physiology ; Pregnancy ; Pregnancy Trimester, Second ; Pregnancy Trimester, Third ; Premature birth ; Substantia alba ; Tensors ; Thalamus ; Thalamus - anatomy &amp; histology ; Thalamus - diagnostic imaging ; Thalamus - physiology ; Trends ; Uterus - diagnostic imaging ; Uterus - physiology ; White Matter - anatomy &amp; histology ; White Matter - diagnostic imaging ; White Matter - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (20), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 18, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</citedby><cites>FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</cites><orcidid>0000-0003-4617-3583 ; 0000-0003-4801-7066 ; 0000-0002-3550-1644 ; 0000-0002-8033-6959 ; 0000-0001-8542-1370 ; 0000-0003-3476-3500 ; 0000-0001-5591-7383 ; 0000-0001-8323-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33972435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Siân</creatorcontrib><creatorcontrib>Pietsch, Maximilian</creatorcontrib><creatorcontrib>Cordero-Grande, Lucilio</creatorcontrib><creatorcontrib>Price, Anthony N.</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Xiao, Jiaxin</creatorcontrib><creatorcontrib>McCabe, Laura</creatorcontrib><creatorcontrib>Rutherford, Mary A.</creatorcontrib><creatorcontrib>Hughes, Emer J.</creatorcontrib><creatorcontrib>Counsell, Serena J.</creatorcontrib><creatorcontrib>Tournier, Jacques-Donald</creatorcontrib><creatorcontrib>Arichi, Tomoki</creatorcontrib><creatorcontrib>Hajnal, Joseph V.</creatorcontrib><creatorcontrib>Edwards, A. David</creatorcontrib><creatorcontrib>Christiaens, Daan</creatorcontrib><creatorcontrib>O’Muircheartaigh, Jonathan</creatorcontrib><title>Development of human white matter pathways in utero over the second and third trimester</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.</description><subject>Abnormalities</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Cell migration</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Connectome</subject><subject>Corpus callosum</subject><subject>Corpus Callosum - anatomy &amp; histology</subject><subject>Corpus Callosum - diagnostic imaging</subject><subject>Corpus Callosum - physiology</subject><subject>Data acquisition</subject><subject>Diffusion Tensor Imaging</subject><subject>Female</subject><subject>Fetal Development - physiology</subject><subject>Fetus</subject><subject>Fetuses</subject><subject>Fibers</subject><subject>Gestation</subject><subject>Gestational Age</subject><subject>Human motion</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Magnetic resonance imaging</subject><subject>Maturation</subject><subject>Microstructure</subject><subject>Myelination</subject><subject>Neural networks</subject><subject>Neurodevelopment</subject><subject>Neurogenesis - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Pregnancy</subject><subject>Pregnancy Trimester, Second</subject><subject>Pregnancy Trimester, Third</subject><subject>Premature birth</subject><subject>Substantia alba</subject><subject>Tensors</subject><subject>Thalamus</subject><subject>Thalamus - anatomy &amp; histology</subject><subject>Thalamus - diagnostic imaging</subject><subject>Thalamus - physiology</subject><subject>Trends</subject><subject>Uterus - diagnostic imaging</subject><subject>Uterus - physiology</subject><subject>White Matter - anatomy &amp; histology</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVIabZpzzk1CHrpxcnoa21fAiX9hEAvLT2KWVmOvdiWI8kb8t93wqabtgdJMPPT4808xs4EXAgo1eU8YbqQIJWpKyGqI7YSUItirWs4ZisAWRaVlvqEvUppCwC1qeAlO1GqLqVWZsV-ffQ7P4R59FPmoeXdMuLE77s-ez5izj7yGXN3jw-J9xNfqBB42FE5d54n78LUcKSTuz7SHfvRJ4JesxctDsm_eXpP2c_Pn35cfy1uvn_5dv3hpnBaq1zIRkoH61KUsHFatq1qpTPSOFBIZkE6bNEIRO9kI3BtGqcEVHoDTes2WKpTdrXXnZfN6BtHY0Qc7Ew-MD7YgL39tzP1nb0NO1sJU9YKSOD9k0AMdwt5t2OfnB8GnHxYkpXkZm2krAyh7_5Dt2GJE41HlAIjlAFF1OWecjGkFH17MCPAPoZmH0Ozz6HRj_O_Zzjwf1Ii4O0e2KYc4qEvS9BAa1S_ARqVnk8</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Wilson, Siân</creator><creator>Pietsch, Maximilian</creator><creator>Cordero-Grande, Lucilio</creator><creator>Price, Anthony N.</creator><creator>Hutter, Jana</creator><creator>Xiao, Jiaxin</creator><creator>McCabe, Laura</creator><creator>Rutherford, Mary A.</creator><creator>Hughes, Emer J.</creator><creator>Counsell, Serena J.</creator><creator>Tournier, Jacques-Donald</creator><creator>Arichi, Tomoki</creator><creator>Hajnal, Joseph V.</creator><creator>Edwards, A. David</creator><creator>Christiaens, Daan</creator><creator>O’Muircheartaigh, Jonathan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4617-3583</orcidid><orcidid>https://orcid.org/0000-0003-4801-7066</orcidid><orcidid>https://orcid.org/0000-0002-3550-1644</orcidid><orcidid>https://orcid.org/0000-0002-8033-6959</orcidid><orcidid>https://orcid.org/0000-0001-8542-1370</orcidid><orcidid>https://orcid.org/0000-0003-3476-3500</orcidid><orcidid>https://orcid.org/0000-0001-5591-7383</orcidid><orcidid>https://orcid.org/0000-0001-8323-5451</orcidid></search><sort><creationdate>20210518</creationdate><title>Development of human white matter pathways in utero over the second and third trimester</title><author>Wilson, Siân ; Pietsch, Maximilian ; Cordero-Grande, Lucilio ; Price, Anthony N. ; Hutter, Jana ; Xiao, Jiaxin ; McCabe, Laura ; Rutherford, Mary A. ; Hughes, Emer J. ; Counsell, Serena J. ; Tournier, Jacques-Donald ; Arichi, Tomoki ; Hajnal, Joseph V. ; Edwards, A. David ; Christiaens, Daan ; O’Muircheartaigh, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Cell migration</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Connectome</topic><topic>Corpus callosum</topic><topic>Corpus Callosum - anatomy &amp; histology</topic><topic>Corpus Callosum - diagnostic imaging</topic><topic>Corpus Callosum - physiology</topic><topic>Data acquisition</topic><topic>Diffusion Tensor Imaging</topic><topic>Female</topic><topic>Fetal Development - physiology</topic><topic>Fetus</topic><topic>Fetuses</topic><topic>Fibers</topic><topic>Gestation</topic><topic>Gestational Age</topic><topic>Human motion</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Magnetic resonance imaging</topic><topic>Maturation</topic><topic>Microstructure</topic><topic>Myelination</topic><topic>Neural networks</topic><topic>Neurodevelopment</topic><topic>Neurogenesis - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Pregnancy</topic><topic>Pregnancy Trimester, Second</topic><topic>Pregnancy Trimester, Third</topic><topic>Premature birth</topic><topic>Substantia alba</topic><topic>Tensors</topic><topic>Thalamus</topic><topic>Thalamus - anatomy &amp; histology</topic><topic>Thalamus - diagnostic imaging</topic><topic>Thalamus - physiology</topic><topic>Trends</topic><topic>Uterus - diagnostic imaging</topic><topic>Uterus - physiology</topic><topic>White Matter - anatomy &amp; histology</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Siân</creatorcontrib><creatorcontrib>Pietsch, Maximilian</creatorcontrib><creatorcontrib>Cordero-Grande, Lucilio</creatorcontrib><creatorcontrib>Price, Anthony N.</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Xiao, Jiaxin</creatorcontrib><creatorcontrib>McCabe, Laura</creatorcontrib><creatorcontrib>Rutherford, Mary A.</creatorcontrib><creatorcontrib>Hughes, Emer J.</creatorcontrib><creatorcontrib>Counsell, Serena J.</creatorcontrib><creatorcontrib>Tournier, Jacques-Donald</creatorcontrib><creatorcontrib>Arichi, Tomoki</creatorcontrib><creatorcontrib>Hajnal, Joseph V.</creatorcontrib><creatorcontrib>Edwards, A. David</creatorcontrib><creatorcontrib>Christiaens, Daan</creatorcontrib><creatorcontrib>O’Muircheartaigh, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Siân</au><au>Pietsch, Maximilian</au><au>Cordero-Grande, Lucilio</au><au>Price, Anthony N.</au><au>Hutter, Jana</au><au>Xiao, Jiaxin</au><au>McCabe, Laura</au><au>Rutherford, Mary A.</au><au>Hughes, Emer J.</au><au>Counsell, Serena J.</au><au>Tournier, Jacques-Donald</au><au>Arichi, Tomoki</au><au>Hajnal, Joseph V.</au><au>Edwards, A. David</au><au>Christiaens, Daan</au><au>O’Muircheartaigh, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of human white matter pathways in utero over the second and third trimester</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-05-18</date><risdate>2021</risdate><volume>118</volume><issue>20</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33972435</pmid><doi>10.1073/pnas.2023598118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4617-3583</orcidid><orcidid>https://orcid.org/0000-0003-4801-7066</orcidid><orcidid>https://orcid.org/0000-0002-3550-1644</orcidid><orcidid>https://orcid.org/0000-0002-8033-6959</orcidid><orcidid>https://orcid.org/0000-0001-8542-1370</orcidid><orcidid>https://orcid.org/0000-0003-3476-3500</orcidid><orcidid>https://orcid.org/0000-0001-5591-7383</orcidid><orcidid>https://orcid.org/0000-0001-8323-5451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (20), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157930
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Abnormalities
Anisotropy
Biological Sciences
Cell migration
Cerebral Cortex - anatomy & histology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Connectome
Corpus callosum
Corpus Callosum - anatomy & histology
Corpus Callosum - diagnostic imaging
Corpus Callosum - physiology
Data acquisition
Diffusion Tensor Imaging
Female
Fetal Development - physiology
Fetus
Fetuses
Fibers
Gestation
Gestational Age
Human motion
Humans
Infant
Infant, Newborn
Magnetic resonance imaging
Maturation
Microstructure
Myelination
Neural networks
Neurodevelopment
Neurogenesis - physiology
Neurons - cytology
Neurons - physiology
Pregnancy
Pregnancy Trimester, Second
Pregnancy Trimester, Third
Premature birth
Substantia alba
Tensors
Thalamus
Thalamus - anatomy & histology
Thalamus - diagnostic imaging
Thalamus - physiology
Trends
Uterus - diagnostic imaging
Uterus - physiology
White Matter - anatomy & histology
White Matter - diagnostic imaging
White Matter - physiology
title Development of human white matter pathways in utero over the second and third trimester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20human%20white%20matter%20pathways%20in%20utero%20over%20the%20second%20and%20third%20trimester&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wilson,%20Si%C3%A2n&rft.date=2021-05-18&rft.volume=118&rft.issue=20&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023598118&rft_dat=%3Cjstor_pubme%3E27040443%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530513503&rft_id=info:pmid/33972435&rft_jstor_id=27040443&rfr_iscdi=true