Development of human white matter pathways in utero over the second and third trimester
During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient netw...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (20), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 20 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Wilson, Siân Pietsch, Maximilian Cordero-Grande, Lucilio Price, Anthony N. Hutter, Jana Xiao, Jiaxin McCabe, Laura Rutherford, Mary A. Hughes, Emer J. Counsell, Serena J. Tournier, Jacques-Donald Arichi, Tomoki Hajnal, Joseph V. Edwards, A. David Christiaens, Daan O’Muircheartaigh, Jonathan |
description | During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth. |
doi_str_mv | 10.1073/pnas.2023598118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040443</jstor_id><sourcerecordid>27040443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVIabZpzzk1CHrpxcnoa21fAiX9hEAvLT2KWVmOvdiWI8kb8t93wqabtgdJMPPT4808xs4EXAgo1eU8YbqQIJWpKyGqI7YSUItirWs4ZisAWRaVlvqEvUppCwC1qeAlO1GqLqVWZsV-ffQ7P4R59FPmoeXdMuLE77s-ez5izj7yGXN3jw-J9xNfqBB42FE5d54n78LUcKSTuz7SHfvRJ4JesxctDsm_eXpP2c_Pn35cfy1uvn_5dv3hpnBaq1zIRkoH61KUsHFatq1qpTPSOFBIZkE6bNEIRO9kI3BtGqcEVHoDTes2WKpTdrXXnZfN6BtHY0Qc7Ew-MD7YgL39tzP1nb0NO1sJU9YKSOD9k0AMdwt5t2OfnB8GnHxYkpXkZm2krAyh7_5Dt2GJE41HlAIjlAFF1OWecjGkFH17MCPAPoZmH0Ozz6HRj_O_Zzjwf1Ii4O0e2KYc4qEvS9BAa1S_ARqVnk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530513503</pqid></control><display><type>article</type><title>Development of human white matter pathways in utero over the second and third trimester</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wilson, Siân ; Pietsch, Maximilian ; Cordero-Grande, Lucilio ; Price, Anthony N. ; Hutter, Jana ; Xiao, Jiaxin ; McCabe, Laura ; Rutherford, Mary A. ; Hughes, Emer J. ; Counsell, Serena J. ; Tournier, Jacques-Donald ; Arichi, Tomoki ; Hajnal, Joseph V. ; Edwards, A. David ; Christiaens, Daan ; O’Muircheartaigh, Jonathan</creator><creatorcontrib>Wilson, Siân ; Pietsch, Maximilian ; Cordero-Grande, Lucilio ; Price, Anthony N. ; Hutter, Jana ; Xiao, Jiaxin ; McCabe, Laura ; Rutherford, Mary A. ; Hughes, Emer J. ; Counsell, Serena J. ; Tournier, Jacques-Donald ; Arichi, Tomoki ; Hajnal, Joseph V. ; Edwards, A. David ; Christiaens, Daan ; O’Muircheartaigh, Jonathan</creatorcontrib><description>During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023598118</identifier><identifier>PMID: 33972435</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abnormalities ; Anisotropy ; Biological Sciences ; Cell migration ; Cerebral Cortex - anatomy & histology ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Connectome ; Corpus callosum ; Corpus Callosum - anatomy & histology ; Corpus Callosum - diagnostic imaging ; Corpus Callosum - physiology ; Data acquisition ; Diffusion Tensor Imaging ; Female ; Fetal Development - physiology ; Fetus ; Fetuses ; Fibers ; Gestation ; Gestational Age ; Human motion ; Humans ; Infant ; Infant, Newborn ; Magnetic resonance imaging ; Maturation ; Microstructure ; Myelination ; Neural networks ; Neurodevelopment ; Neurogenesis - physiology ; Neurons - cytology ; Neurons - physiology ; Pregnancy ; Pregnancy Trimester, Second ; Pregnancy Trimester, Third ; Premature birth ; Substantia alba ; Tensors ; Thalamus ; Thalamus - anatomy & histology ; Thalamus - diagnostic imaging ; Thalamus - physiology ; Trends ; Uterus - diagnostic imaging ; Uterus - physiology ; White Matter - anatomy & histology ; White Matter - diagnostic imaging ; White Matter - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (20), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 18, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</citedby><cites>FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</cites><orcidid>0000-0003-4617-3583 ; 0000-0003-4801-7066 ; 0000-0002-3550-1644 ; 0000-0002-8033-6959 ; 0000-0001-8542-1370 ; 0000-0003-3476-3500 ; 0000-0001-5591-7383 ; 0000-0001-8323-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33972435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Siân</creatorcontrib><creatorcontrib>Pietsch, Maximilian</creatorcontrib><creatorcontrib>Cordero-Grande, Lucilio</creatorcontrib><creatorcontrib>Price, Anthony N.</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Xiao, Jiaxin</creatorcontrib><creatorcontrib>McCabe, Laura</creatorcontrib><creatorcontrib>Rutherford, Mary A.</creatorcontrib><creatorcontrib>Hughes, Emer J.</creatorcontrib><creatorcontrib>Counsell, Serena J.</creatorcontrib><creatorcontrib>Tournier, Jacques-Donald</creatorcontrib><creatorcontrib>Arichi, Tomoki</creatorcontrib><creatorcontrib>Hajnal, Joseph V.</creatorcontrib><creatorcontrib>Edwards, A. David</creatorcontrib><creatorcontrib>Christiaens, Daan</creatorcontrib><creatorcontrib>O’Muircheartaigh, Jonathan</creatorcontrib><title>Development of human white matter pathways in utero over the second and third trimester</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.</description><subject>Abnormalities</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Cell migration</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Connectome</subject><subject>Corpus callosum</subject><subject>Corpus Callosum - anatomy & histology</subject><subject>Corpus Callosum - diagnostic imaging</subject><subject>Corpus Callosum - physiology</subject><subject>Data acquisition</subject><subject>Diffusion Tensor Imaging</subject><subject>Female</subject><subject>Fetal Development - physiology</subject><subject>Fetus</subject><subject>Fetuses</subject><subject>Fibers</subject><subject>Gestation</subject><subject>Gestational Age</subject><subject>Human motion</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Magnetic resonance imaging</subject><subject>Maturation</subject><subject>Microstructure</subject><subject>Myelination</subject><subject>Neural networks</subject><subject>Neurodevelopment</subject><subject>Neurogenesis - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Pregnancy</subject><subject>Pregnancy Trimester, Second</subject><subject>Pregnancy Trimester, Third</subject><subject>Premature birth</subject><subject>Substantia alba</subject><subject>Tensors</subject><subject>Thalamus</subject><subject>Thalamus - anatomy & histology</subject><subject>Thalamus - diagnostic imaging</subject><subject>Thalamus - physiology</subject><subject>Trends</subject><subject>Uterus - diagnostic imaging</subject><subject>Uterus - physiology</subject><subject>White Matter - anatomy & histology</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVIabZpzzk1CHrpxcnoa21fAiX9hEAvLT2KWVmOvdiWI8kb8t93wqabtgdJMPPT4808xs4EXAgo1eU8YbqQIJWpKyGqI7YSUItirWs4ZisAWRaVlvqEvUppCwC1qeAlO1GqLqVWZsV-ffQ7P4R59FPmoeXdMuLE77s-ez5izj7yGXN3jw-J9xNfqBB42FE5d54n78LUcKSTuz7SHfvRJ4JesxctDsm_eXpP2c_Pn35cfy1uvn_5dv3hpnBaq1zIRkoH61KUsHFatq1qpTPSOFBIZkE6bNEIRO9kI3BtGqcEVHoDTes2WKpTdrXXnZfN6BtHY0Qc7Ew-MD7YgL39tzP1nb0NO1sJU9YKSOD9k0AMdwt5t2OfnB8GnHxYkpXkZm2krAyh7_5Dt2GJE41HlAIjlAFF1OWecjGkFH17MCPAPoZmH0Ozz6HRj_O_Zzjwf1Ii4O0e2KYc4qEvS9BAa1S_ARqVnk8</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Wilson, Siân</creator><creator>Pietsch, Maximilian</creator><creator>Cordero-Grande, Lucilio</creator><creator>Price, Anthony N.</creator><creator>Hutter, Jana</creator><creator>Xiao, Jiaxin</creator><creator>McCabe, Laura</creator><creator>Rutherford, Mary A.</creator><creator>Hughes, Emer J.</creator><creator>Counsell, Serena J.</creator><creator>Tournier, Jacques-Donald</creator><creator>Arichi, Tomoki</creator><creator>Hajnal, Joseph V.</creator><creator>Edwards, A. David</creator><creator>Christiaens, Daan</creator><creator>O’Muircheartaigh, Jonathan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4617-3583</orcidid><orcidid>https://orcid.org/0000-0003-4801-7066</orcidid><orcidid>https://orcid.org/0000-0002-3550-1644</orcidid><orcidid>https://orcid.org/0000-0002-8033-6959</orcidid><orcidid>https://orcid.org/0000-0001-8542-1370</orcidid><orcidid>https://orcid.org/0000-0003-3476-3500</orcidid><orcidid>https://orcid.org/0000-0001-5591-7383</orcidid><orcidid>https://orcid.org/0000-0001-8323-5451</orcidid></search><sort><creationdate>20210518</creationdate><title>Development of human white matter pathways in utero over the second and third trimester</title><author>Wilson, Siân ; Pietsch, Maximilian ; Cordero-Grande, Lucilio ; Price, Anthony N. ; Hutter, Jana ; Xiao, Jiaxin ; McCabe, Laura ; Rutherford, Mary A. ; Hughes, Emer J. ; Counsell, Serena J. ; Tournier, Jacques-Donald ; Arichi, Tomoki ; Hajnal, Joseph V. ; Edwards, A. David ; Christiaens, Daan ; O’Muircheartaigh, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2d22c067170bc42ff3f2c525c03a09502cafa51aaec2d1a65dc31084b0dfcba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Cell migration</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Connectome</topic><topic>Corpus callosum</topic><topic>Corpus Callosum - anatomy & histology</topic><topic>Corpus Callosum - diagnostic imaging</topic><topic>Corpus Callosum - physiology</topic><topic>Data acquisition</topic><topic>Diffusion Tensor Imaging</topic><topic>Female</topic><topic>Fetal Development - physiology</topic><topic>Fetus</topic><topic>Fetuses</topic><topic>Fibers</topic><topic>Gestation</topic><topic>Gestational Age</topic><topic>Human motion</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Magnetic resonance imaging</topic><topic>Maturation</topic><topic>Microstructure</topic><topic>Myelination</topic><topic>Neural networks</topic><topic>Neurodevelopment</topic><topic>Neurogenesis - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Pregnancy</topic><topic>Pregnancy Trimester, Second</topic><topic>Pregnancy Trimester, Third</topic><topic>Premature birth</topic><topic>Substantia alba</topic><topic>Tensors</topic><topic>Thalamus</topic><topic>Thalamus - anatomy & histology</topic><topic>Thalamus - diagnostic imaging</topic><topic>Thalamus - physiology</topic><topic>Trends</topic><topic>Uterus - diagnostic imaging</topic><topic>Uterus - physiology</topic><topic>White Matter - anatomy & histology</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Siân</creatorcontrib><creatorcontrib>Pietsch, Maximilian</creatorcontrib><creatorcontrib>Cordero-Grande, Lucilio</creatorcontrib><creatorcontrib>Price, Anthony N.</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Xiao, Jiaxin</creatorcontrib><creatorcontrib>McCabe, Laura</creatorcontrib><creatorcontrib>Rutherford, Mary A.</creatorcontrib><creatorcontrib>Hughes, Emer J.</creatorcontrib><creatorcontrib>Counsell, Serena J.</creatorcontrib><creatorcontrib>Tournier, Jacques-Donald</creatorcontrib><creatorcontrib>Arichi, Tomoki</creatorcontrib><creatorcontrib>Hajnal, Joseph V.</creatorcontrib><creatorcontrib>Edwards, A. David</creatorcontrib><creatorcontrib>Christiaens, Daan</creatorcontrib><creatorcontrib>O’Muircheartaigh, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Siân</au><au>Pietsch, Maximilian</au><au>Cordero-Grande, Lucilio</au><au>Price, Anthony N.</au><au>Hutter, Jana</au><au>Xiao, Jiaxin</au><au>McCabe, Laura</au><au>Rutherford, Mary A.</au><au>Hughes, Emer J.</au><au>Counsell, Serena J.</au><au>Tournier, Jacques-Donald</au><au>Arichi, Tomoki</au><au>Hajnal, Joseph V.</au><au>Edwards, A. David</au><au>Christiaens, Daan</au><au>O’Muircheartaigh, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of human white matter pathways in utero over the second and third trimester</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-05-18</date><risdate>2021</risdate><volume>118</volume><issue>20</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33972435</pmid><doi>10.1073/pnas.2023598118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4617-3583</orcidid><orcidid>https://orcid.org/0000-0003-4801-7066</orcidid><orcidid>https://orcid.org/0000-0002-3550-1644</orcidid><orcidid>https://orcid.org/0000-0002-8033-6959</orcidid><orcidid>https://orcid.org/0000-0001-8542-1370</orcidid><orcidid>https://orcid.org/0000-0003-3476-3500</orcidid><orcidid>https://orcid.org/0000-0001-5591-7383</orcidid><orcidid>https://orcid.org/0000-0001-8323-5451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (20), p.1-7 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157930 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Abnormalities Anisotropy Biological Sciences Cell migration Cerebral Cortex - anatomy & histology Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Connectome Corpus callosum Corpus Callosum - anatomy & histology Corpus Callosum - diagnostic imaging Corpus Callosum - physiology Data acquisition Diffusion Tensor Imaging Female Fetal Development - physiology Fetus Fetuses Fibers Gestation Gestational Age Human motion Humans Infant Infant, Newborn Magnetic resonance imaging Maturation Microstructure Myelination Neural networks Neurodevelopment Neurogenesis - physiology Neurons - cytology Neurons - physiology Pregnancy Pregnancy Trimester, Second Pregnancy Trimester, Third Premature birth Substantia alba Tensors Thalamus Thalamus - anatomy & histology Thalamus - diagnostic imaging Thalamus - physiology Trends Uterus - diagnostic imaging Uterus - physiology White Matter - anatomy & histology White Matter - diagnostic imaging White Matter - physiology |
title | Development of human white matter pathways in utero over the second and third trimester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20human%20white%20matter%20pathways%20in%20utero%20over%20the%20second%20and%20third%20trimester&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wilson,%20Si%C3%A2n&rft.date=2021-05-18&rft.volume=118&rft.issue=20&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023598118&rft_dat=%3Cjstor_pubme%3E27040443%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530513503&rft_id=info:pmid/33972435&rft_jstor_id=27040443&rfr_iscdi=true |