Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures
The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical di...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-05, Vol.143 (19), p.7358-7367 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7367 |
---|---|
container_issue | 19 |
container_start_page | 7358 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Morzy, Diana Rubio-Sánchez, Roger Joshi, Himanshu Aksimentiev, Aleksei Di Michele, Lorenzo Keyser, Ulrich F |
description | The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme. |
doi_str_mv | 10.1021/jacs.1c00166 |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a579554071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlZvniVHD67mYzfZXoRSrQq1gug5TLLZdst-lCQr9N-7S2tR8DQM88w7w4PQJSW3lDB6twbjb6khhApxhIY0YSRKKBPHaEgIYZFMBR-gM-_XXRuzlJ6iAedjQWXMhmg-hVA0tcfvdtmWECx-tZV2UFs8CQHMqrJ1wFBneNbWpkehLMIWNzl-WEzwAurGB9ea0Drrz9FJDqW3F_s6Qp-zx4_pczR_e3qZTuYRxFSGSGeGS81oFnPbfUtAazGWaWaIoDHoTDMJSS60hJjrTOY0STQnJs5FIkwmLB-h-13uptWVzUz3ooNSbVxRgduqBgr1d1IXK7VsvlRKkzjhsgu42QUY13jvbH7YpUT1VlVvVe2tdvjV73sH-EdjB1zvgH5r3bSus-T_z_oGspyCvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</title><source>MEDLINE</source><source>ACS Publications</source><creator>Morzy, Diana ; Rubio-Sánchez, Roger ; Joshi, Himanshu ; Aksimentiev, Aleksei ; Di Michele, Lorenzo ; Keyser, Ulrich F</creator><creatorcontrib>Morzy, Diana ; Rubio-Sánchez, Roger ; Joshi, Himanshu ; Aksimentiev, Aleksei ; Di Michele, Lorenzo ; Keyser, Ulrich F</creatorcontrib><description>The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c00166</identifier><identifier>PMID: 33961742</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cations - chemistry ; Cations - metabolism ; DNA - chemistry ; DNA - metabolism ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Molecular Dynamics Simulation ; Nanostructures - chemistry ; Static Electricity</subject><ispartof>Journal of the American Chemical Society, 2021-05, Vol.143 (19), p.7358-7367</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</citedby><cites>FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</cites><orcidid>0000-0001-5909-2876 ; 0000-0001-5574-5809 ; 0000-0002-1458-9747 ; 0000-0003-0769-524X ; 0000-0002-6042-8442 ; 0000-0003-3188-5414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c00166$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c00166$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33961742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morzy, Diana</creatorcontrib><creatorcontrib>Rubio-Sánchez, Roger</creatorcontrib><creatorcontrib>Joshi, Himanshu</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><creatorcontrib>Di Michele, Lorenzo</creatorcontrib><creatorcontrib>Keyser, Ulrich F</creatorcontrib><title>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.</description><subject>Cations - chemistry</subject><subject>Cations - metabolism</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanostructures - chemistry</subject><subject>Static Electricity</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlZvniVHD67mYzfZXoRSrQq1gug5TLLZdst-lCQr9N-7S2tR8DQM88w7w4PQJSW3lDB6twbjb6khhApxhIY0YSRKKBPHaEgIYZFMBR-gM-_XXRuzlJ6iAedjQWXMhmg-hVA0tcfvdtmWECx-tZV2UFs8CQHMqrJ1wFBneNbWpkehLMIWNzl-WEzwAurGB9ea0Drrz9FJDqW3F_s6Qp-zx4_pczR_e3qZTuYRxFSGSGeGS81oFnPbfUtAazGWaWaIoDHoTDMJSS60hJjrTOY0STQnJs5FIkwmLB-h-13uptWVzUz3ooNSbVxRgduqBgr1d1IXK7VsvlRKkzjhsgu42QUY13jvbH7YpUT1VlVvVe2tdvjV73sH-EdjB1zvgH5r3bSus-T_z_oGspyCvQ</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Morzy, Diana</creator><creator>Rubio-Sánchez, Roger</creator><creator>Joshi, Himanshu</creator><creator>Aksimentiev, Aleksei</creator><creator>Di Michele, Lorenzo</creator><creator>Keyser, Ulrich F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5909-2876</orcidid><orcidid>https://orcid.org/0000-0001-5574-5809</orcidid><orcidid>https://orcid.org/0000-0002-1458-9747</orcidid><orcidid>https://orcid.org/0000-0003-0769-524X</orcidid><orcidid>https://orcid.org/0000-0002-6042-8442</orcidid><orcidid>https://orcid.org/0000-0003-3188-5414</orcidid></search><sort><creationdate>20210519</creationdate><title>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</title><author>Morzy, Diana ; Rubio-Sánchez, Roger ; Joshi, Himanshu ; Aksimentiev, Aleksei ; Di Michele, Lorenzo ; Keyser, Ulrich F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cations - chemistry</topic><topic>Cations - metabolism</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanostructures - chemistry</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morzy, Diana</creatorcontrib><creatorcontrib>Rubio-Sánchez, Roger</creatorcontrib><creatorcontrib>Joshi, Himanshu</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><creatorcontrib>Di Michele, Lorenzo</creatorcontrib><creatorcontrib>Keyser, Ulrich F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morzy, Diana</au><au>Rubio-Sánchez, Roger</au><au>Joshi, Himanshu</au><au>Aksimentiev, Aleksei</au><au>Di Michele, Lorenzo</au><au>Keyser, Ulrich F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-05-19</date><risdate>2021</risdate><volume>143</volume><issue>19</issue><spage>7358</spage><epage>7367</epage><pages>7358-7367</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33961742</pmid><doi>10.1021/jacs.1c00166</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5909-2876</orcidid><orcidid>https://orcid.org/0000-0001-5574-5809</orcidid><orcidid>https://orcid.org/0000-0002-1458-9747</orcidid><orcidid>https://orcid.org/0000-0003-0769-524X</orcidid><orcidid>https://orcid.org/0000-0002-6042-8442</orcidid><orcidid>https://orcid.org/0000-0003-3188-5414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-05, Vol.143 (19), p.7358-7367 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154537 |
source | MEDLINE; ACS Publications |
subjects | Cations - chemistry Cations - metabolism DNA - chemistry DNA - metabolism Lipid Bilayers - chemistry Lipid Bilayers - metabolism Molecular Dynamics Simulation Nanostructures - chemistry Static Electricity |
title | Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cations%20Regulate%20Membrane%20Attachment%20and%20Functionality%20of%20DNA%20Nanostructures&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Morzy,%20Diana&rft.date=2021-05-19&rft.volume=143&rft.issue=19&rft.spage=7358&rft.epage=7367&rft.pages=7358-7367&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c00166&rft_dat=%3Cacs_pubme%3Ea579554071%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33961742&rfr_iscdi=true |