Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures

The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-05, Vol.143 (19), p.7358-7367
Hauptverfasser: Morzy, Diana, Rubio-Sánchez, Roger, Joshi, Himanshu, Aksimentiev, Aleksei, Di Michele, Lorenzo, Keyser, Ulrich F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7367
container_issue 19
container_start_page 7358
container_title Journal of the American Chemical Society
container_volume 143
creator Morzy, Diana
Rubio-Sánchez, Roger
Joshi, Himanshu
Aksimentiev, Aleksei
Di Michele, Lorenzo
Keyser, Ulrich F
description The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.
doi_str_mv 10.1021/jacs.1c00166
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a579554071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlZvniVHD67mYzfZXoRSrQq1gug5TLLZdst-lCQr9N-7S2tR8DQM88w7w4PQJSW3lDB6twbjb6khhApxhIY0YSRKKBPHaEgIYZFMBR-gM-_XXRuzlJ6iAedjQWXMhmg-hVA0tcfvdtmWECx-tZV2UFs8CQHMqrJ1wFBneNbWpkehLMIWNzl-WEzwAurGB9ea0Drrz9FJDqW3F_s6Qp-zx4_pczR_e3qZTuYRxFSGSGeGS81oFnPbfUtAazGWaWaIoDHoTDMJSS60hJjrTOY0STQnJs5FIkwmLB-h-13uptWVzUz3ooNSbVxRgduqBgr1d1IXK7VsvlRKkzjhsgu42QUY13jvbH7YpUT1VlVvVe2tdvjV73sH-EdjB1zvgH5r3bSus-T_z_oGspyCvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</title><source>MEDLINE</source><source>ACS Publications</source><creator>Morzy, Diana ; Rubio-Sánchez, Roger ; Joshi, Himanshu ; Aksimentiev, Aleksei ; Di Michele, Lorenzo ; Keyser, Ulrich F</creator><creatorcontrib>Morzy, Diana ; Rubio-Sánchez, Roger ; Joshi, Himanshu ; Aksimentiev, Aleksei ; Di Michele, Lorenzo ; Keyser, Ulrich F</creatorcontrib><description>The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c00166</identifier><identifier>PMID: 33961742</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cations - chemistry ; Cations - metabolism ; DNA - chemistry ; DNA - metabolism ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Molecular Dynamics Simulation ; Nanostructures - chemistry ; Static Electricity</subject><ispartof>Journal of the American Chemical Society, 2021-05, Vol.143 (19), p.7358-7367</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</citedby><cites>FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</cites><orcidid>0000-0001-5909-2876 ; 0000-0001-5574-5809 ; 0000-0002-1458-9747 ; 0000-0003-0769-524X ; 0000-0002-6042-8442 ; 0000-0003-3188-5414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c00166$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c00166$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33961742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morzy, Diana</creatorcontrib><creatorcontrib>Rubio-Sánchez, Roger</creatorcontrib><creatorcontrib>Joshi, Himanshu</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><creatorcontrib>Di Michele, Lorenzo</creatorcontrib><creatorcontrib>Keyser, Ulrich F</creatorcontrib><title>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.</description><subject>Cations - chemistry</subject><subject>Cations - metabolism</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanostructures - chemistry</subject><subject>Static Electricity</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlZvniVHD67mYzfZXoRSrQq1gug5TLLZdst-lCQr9N-7S2tR8DQM88w7w4PQJSW3lDB6twbjb6khhApxhIY0YSRKKBPHaEgIYZFMBR-gM-_XXRuzlJ6iAedjQWXMhmg-hVA0tcfvdtmWECx-tZV2UFs8CQHMqrJ1wFBneNbWpkehLMIWNzl-WEzwAurGB9ea0Drrz9FJDqW3F_s6Qp-zx4_pczR_e3qZTuYRxFSGSGeGS81oFnPbfUtAazGWaWaIoDHoTDMJSS60hJjrTOY0STQnJs5FIkwmLB-h-13uptWVzUz3ooNSbVxRgduqBgr1d1IXK7VsvlRKkzjhsgu42QUY13jvbH7YpUT1VlVvVe2tdvjV73sH-EdjB1zvgH5r3bSus-T_z_oGspyCvQ</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Morzy, Diana</creator><creator>Rubio-Sánchez, Roger</creator><creator>Joshi, Himanshu</creator><creator>Aksimentiev, Aleksei</creator><creator>Di Michele, Lorenzo</creator><creator>Keyser, Ulrich F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5909-2876</orcidid><orcidid>https://orcid.org/0000-0001-5574-5809</orcidid><orcidid>https://orcid.org/0000-0002-1458-9747</orcidid><orcidid>https://orcid.org/0000-0003-0769-524X</orcidid><orcidid>https://orcid.org/0000-0002-6042-8442</orcidid><orcidid>https://orcid.org/0000-0003-3188-5414</orcidid></search><sort><creationdate>20210519</creationdate><title>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</title><author>Morzy, Diana ; Rubio-Sánchez, Roger ; Joshi, Himanshu ; Aksimentiev, Aleksei ; Di Michele, Lorenzo ; Keyser, Ulrich F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-bdc37b21d43e5200abb6978dc0614abdb27a5f6b7a43bd7f155b30c4f656cd6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cations - chemistry</topic><topic>Cations - metabolism</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanostructures - chemistry</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morzy, Diana</creatorcontrib><creatorcontrib>Rubio-Sánchez, Roger</creatorcontrib><creatorcontrib>Joshi, Himanshu</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><creatorcontrib>Di Michele, Lorenzo</creatorcontrib><creatorcontrib>Keyser, Ulrich F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morzy, Diana</au><au>Rubio-Sánchez, Roger</au><au>Joshi, Himanshu</au><au>Aksimentiev, Aleksei</au><au>Di Michele, Lorenzo</au><au>Keyser, Ulrich F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-05-19</date><risdate>2021</risdate><volume>143</volume><issue>19</issue><spage>7358</spage><epage>7367</epage><pages>7358-7367</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The interplay between nucleic acids and lipids underpins several key processes in molecular biology, synthetic biotechnology, vaccine technology, and nanomedicine. These interactions are often electrostatic in nature, and much of their rich phenomenology remains unexplored in view of the chemical diversity of lipids, the heterogeneity of their phases, and the broad range of relevant solvent conditions. Here we unravel the electrostatic interactions between zwitterionic lipid membranes and DNA nanostructures in the presence of physiologically relevant cations, with the purpose of identifying new routes to program DNA–lipid complexation and membrane-active nanodevices. We demonstrate that this interplay is influenced by both the phase of the lipid membranes and the valency of the ions and observe divalent cation bridging between nucleic acids and gel-phase bilayers. Furthermore, even in the presence of hydrophobic modifications on the DNA, we find that cations are still required to enable DNA adhesion to liquid-phase membranes. We show that the latter mechanism can be exploited to control the degree of attachment of cholesterol-modified DNA nanostructures by modifying their overall hydrophobicity and charge. Besides their biological relevance, the interaction mechanisms we explored hold great practical potential in the design of biomimetic nanodevices, as we show by constructing an ion-regulated DNA-based synthetic enzyme.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33961742</pmid><doi>10.1021/jacs.1c00166</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5909-2876</orcidid><orcidid>https://orcid.org/0000-0001-5574-5809</orcidid><orcidid>https://orcid.org/0000-0002-1458-9747</orcidid><orcidid>https://orcid.org/0000-0003-0769-524X</orcidid><orcidid>https://orcid.org/0000-0002-6042-8442</orcidid><orcidid>https://orcid.org/0000-0003-3188-5414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-05, Vol.143 (19), p.7358-7367
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154537
source MEDLINE; ACS Publications
subjects Cations - chemistry
Cations - metabolism
DNA - chemistry
DNA - metabolism
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Molecular Dynamics Simulation
Nanostructures - chemistry
Static Electricity
title Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cations%20Regulate%20Membrane%20Attachment%20and%20Functionality%20of%20DNA%20Nanostructures&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Morzy,%20Diana&rft.date=2021-05-19&rft.volume=143&rft.issue=19&rft.spage=7358&rft.epage=7367&rft.pages=7358-7367&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c00166&rft_dat=%3Cacs_pubme%3Ea579554071%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33961742&rfr_iscdi=true