Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance
During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions t...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2021-05, Vol.186 (1), p.142-167 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 142 |
container_title | Plant physiology (Bethesda) |
container_volume | 186 |
creator | Höhner, Ricarda Day, Philip M Zimmermann, Sandra E Lopez, Laura S Krämer, Moritz Giavalisco, Patrick Correa Galvis, Viviana Armbruster, Ute Schöttler, Mark Aurel Jahns, Peter Krueger, Stephan Kunz, Hans-Henning |
description | During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis. |
doi_str_mv | 10.1093/plphys/kiaa117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506519316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</originalsourceid><addsrcrecordid>eNpVkUFv2zAMhYWiQ5Olu-5Y6NhLWtGyLPkyIEi8ZEDQFEl2yEmQZXlRZ1uuZA_Iv5-HZMF2IEiQj48EPoQ-A3kCktLntmqPp_D80yoFwG_QGBiNphGLxS0aEzLURIh0hD6G8EYIAQrxHRpRynnKEzpG-a7zrlYVfpktVjj0bVtZU-D8hF9Xm90Qy_Vhnm1n-wwvstVhsd0ss5fZLqPYBqx9r-2wWzqP26PrXDg13dF0VuPW-KFbq0abe_ShVFUwny55gr5_zfbz1XS9WX6bz9ZTHbOkmwpltIggytPSgOYECsV0zmlutC51XPAiiSjXgie8KIEBLRLKhKA8BcFpAnSCvpx92z6vTaFN03lVydbbWvmTdMrK_yeNPcof7pcUwGLCo8Hg8WLg3XtvQidrG7SpKtUY1wcZMZIwSCkkg_TpLNXeheBNeT0DRP4BI89g5AXMsPDw73NX-V8S9Dc6l4u-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506519316</pqid></control><display><type>article</type><title>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Höhner, Ricarda ; Day, Philip M ; Zimmermann, Sandra E ; Lopez, Laura S ; Krämer, Moritz ; Giavalisco, Patrick ; Correa Galvis, Viviana ; Armbruster, Ute ; Schöttler, Mark Aurel ; Jahns, Peter ; Krueger, Stephan ; Kunz, Hans-Henning</creator><creatorcontrib>Höhner, Ricarda ; Day, Philip M ; Zimmermann, Sandra E ; Lopez, Laura S ; Krämer, Moritz ; Giavalisco, Patrick ; Correa Galvis, Viviana ; Armbruster, Ute ; Schöttler, Mark Aurel ; Jahns, Peter ; Krueger, Stephan ; Kunz, Hans-Henning</creatorcontrib><description>During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiaa117</identifier><identifier>PMID: 33779763</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Focus Issue on Plant Redox Biology ; NAD - metabolism ; Phosphoglycerate Dehydrogenase - metabolism ; Photosynthesis</subject><ispartof>Plant physiology (Bethesda), 2021-05, Vol.186 (1), p.142-167</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</citedby><cites>FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</cites><orcidid>0000-0002-5340-1153 ; 0000-0001-8000-0817 ; 0000-0002-4636-1827 ; 0000-0002-8092-9148 ; 0000-0003-3210-0260 ; 0000-0003-4038-9199 ; 0000-0002-8814-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33779763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Höhner, Ricarda</creatorcontrib><creatorcontrib>Day, Philip M</creatorcontrib><creatorcontrib>Zimmermann, Sandra E</creatorcontrib><creatorcontrib>Lopez, Laura S</creatorcontrib><creatorcontrib>Krämer, Moritz</creatorcontrib><creatorcontrib>Giavalisco, Patrick</creatorcontrib><creatorcontrib>Correa Galvis, Viviana</creatorcontrib><creatorcontrib>Armbruster, Ute</creatorcontrib><creatorcontrib>Schöttler, Mark Aurel</creatorcontrib><creatorcontrib>Jahns, Peter</creatorcontrib><creatorcontrib>Krueger, Stephan</creatorcontrib><creatorcontrib>Kunz, Hans-Henning</creatorcontrib><title>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Focus Issue on Plant Redox Biology</subject><subject>NAD - metabolism</subject><subject>Phosphoglycerate Dehydrogenase - metabolism</subject><subject>Photosynthesis</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv2zAMhYWiQ5Olu-5Y6NhLWtGyLPkyIEi8ZEDQFEl2yEmQZXlRZ1uuZA_Iv5-HZMF2IEiQj48EPoQ-A3kCktLntmqPp_D80yoFwG_QGBiNphGLxS0aEzLURIh0hD6G8EYIAQrxHRpRynnKEzpG-a7zrlYVfpktVjj0bVtZU-D8hF9Xm90Qy_Vhnm1n-wwvstVhsd0ss5fZLqPYBqx9r-2wWzqP26PrXDg13dF0VuPW-KFbq0abe_ShVFUwny55gr5_zfbz1XS9WX6bz9ZTHbOkmwpltIggytPSgOYECsV0zmlutC51XPAiiSjXgie8KIEBLRLKhKA8BcFpAnSCvpx92z6vTaFN03lVydbbWvmTdMrK_yeNPcof7pcUwGLCo8Hg8WLg3XtvQidrG7SpKtUY1wcZMZIwSCkkg_TpLNXeheBNeT0DRP4BI89g5AXMsPDw73NX-V8S9Dc6l4u-</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Höhner, Ricarda</creator><creator>Day, Philip M</creator><creator>Zimmermann, Sandra E</creator><creator>Lopez, Laura S</creator><creator>Krämer, Moritz</creator><creator>Giavalisco, Patrick</creator><creator>Correa Galvis, Viviana</creator><creator>Armbruster, Ute</creator><creator>Schöttler, Mark Aurel</creator><creator>Jahns, Peter</creator><creator>Krueger, Stephan</creator><creator>Kunz, Hans-Henning</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5340-1153</orcidid><orcidid>https://orcid.org/0000-0001-8000-0817</orcidid><orcidid>https://orcid.org/0000-0002-4636-1827</orcidid><orcidid>https://orcid.org/0000-0002-8092-9148</orcidid><orcidid>https://orcid.org/0000-0003-3210-0260</orcidid><orcidid>https://orcid.org/0000-0003-4038-9199</orcidid><orcidid>https://orcid.org/0000-0002-8814-8207</orcidid></search><sort><creationdate>20210527</creationdate><title>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</title><author>Höhner, Ricarda ; Day, Philip M ; Zimmermann, Sandra E ; Lopez, Laura S ; Krämer, Moritz ; Giavalisco, Patrick ; Correa Galvis, Viviana ; Armbruster, Ute ; Schöttler, Mark Aurel ; Jahns, Peter ; Krueger, Stephan ; Kunz, Hans-Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Focus Issue on Plant Redox Biology</topic><topic>NAD - metabolism</topic><topic>Phosphoglycerate Dehydrogenase - metabolism</topic><topic>Photosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höhner, Ricarda</creatorcontrib><creatorcontrib>Day, Philip M</creatorcontrib><creatorcontrib>Zimmermann, Sandra E</creatorcontrib><creatorcontrib>Lopez, Laura S</creatorcontrib><creatorcontrib>Krämer, Moritz</creatorcontrib><creatorcontrib>Giavalisco, Patrick</creatorcontrib><creatorcontrib>Correa Galvis, Viviana</creatorcontrib><creatorcontrib>Armbruster, Ute</creatorcontrib><creatorcontrib>Schöttler, Mark Aurel</creatorcontrib><creatorcontrib>Jahns, Peter</creatorcontrib><creatorcontrib>Krueger, Stephan</creatorcontrib><creatorcontrib>Kunz, Hans-Henning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höhner, Ricarda</au><au>Day, Philip M</au><au>Zimmermann, Sandra E</au><au>Lopez, Laura S</au><au>Krämer, Moritz</au><au>Giavalisco, Patrick</au><au>Correa Galvis, Viviana</au><au>Armbruster, Ute</au><au>Schöttler, Mark Aurel</au><au>Jahns, Peter</au><au>Krueger, Stephan</au><au>Kunz, Hans-Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-05-27</date><risdate>2021</risdate><volume>186</volume><issue>1</issue><spage>142</spage><epage>167</epage><pages>142-167</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33779763</pmid><doi>10.1093/plphys/kiaa117</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5340-1153</orcidid><orcidid>https://orcid.org/0000-0001-8000-0817</orcidid><orcidid>https://orcid.org/0000-0002-4636-1827</orcidid><orcidid>https://orcid.org/0000-0002-8092-9148</orcidid><orcidid>https://orcid.org/0000-0003-3210-0260</orcidid><orcidid>https://orcid.org/0000-0003-4038-9199</orcidid><orcidid>https://orcid.org/0000-0002-8814-8207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2021-05, Vol.186 (1), p.142-167 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154072 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Arabidopsis - enzymology Arabidopsis - metabolism Arabidopsis Proteins - metabolism Focus Issue on Plant Redox Biology NAD - metabolism Phosphoglycerate Dehydrogenase - metabolism Photosynthesis |
title | Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stromal%20NADH%20supplied%20by%20PHOSPHOGLYCERATE%20DEHYDROGENASE3%20is%20crucial%20for%20photosynthetic%20performance&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=H%C3%B6hner,%20Ricarda&rft.date=2021-05-27&rft.volume=186&rft.issue=1&rft.spage=142&rft.epage=167&rft.pages=142-167&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiaa117&rft_dat=%3Cproquest_pubme%3E2506519316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506519316&rft_id=info:pmid/33779763&rfr_iscdi=true |