Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance

During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2021-05, Vol.186 (1), p.142-167
Hauptverfasser: Höhner, Ricarda, Day, Philip M, Zimmermann, Sandra E, Lopez, Laura S, Krämer, Moritz, Giavalisco, Patrick, Correa Galvis, Viviana, Armbruster, Ute, Schöttler, Mark Aurel, Jahns, Peter, Krueger, Stephan, Kunz, Hans-Henning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 142
container_title Plant physiology (Bethesda)
container_volume 186
creator Höhner, Ricarda
Day, Philip M
Zimmermann, Sandra E
Lopez, Laura S
Krämer, Moritz
Giavalisco, Patrick
Correa Galvis, Viviana
Armbruster, Ute
Schöttler, Mark Aurel
Jahns, Peter
Krueger, Stephan
Kunz, Hans-Henning
description During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.
doi_str_mv 10.1093/plphys/kiaa117
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506519316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</originalsourceid><addsrcrecordid>eNpVkUFv2zAMhYWiQ5Olu-5Y6NhLWtGyLPkyIEi8ZEDQFEl2yEmQZXlRZ1uuZA_Iv5-HZMF2IEiQj48EPoQ-A3kCktLntmqPp_D80yoFwG_QGBiNphGLxS0aEzLURIh0hD6G8EYIAQrxHRpRynnKEzpG-a7zrlYVfpktVjj0bVtZU-D8hF9Xm90Qy_Vhnm1n-wwvstVhsd0ss5fZLqPYBqx9r-2wWzqP26PrXDg13dF0VuPW-KFbq0abe_ShVFUwny55gr5_zfbz1XS9WX6bz9ZTHbOkmwpltIggytPSgOYECsV0zmlutC51XPAiiSjXgie8KIEBLRLKhKA8BcFpAnSCvpx92z6vTaFN03lVydbbWvmTdMrK_yeNPcof7pcUwGLCo8Hg8WLg3XtvQidrG7SpKtUY1wcZMZIwSCkkg_TpLNXeheBNeT0DRP4BI89g5AXMsPDw73NX-V8S9Dc6l4u-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506519316</pqid></control><display><type>article</type><title>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Höhner, Ricarda ; Day, Philip M ; Zimmermann, Sandra E ; Lopez, Laura S ; Krämer, Moritz ; Giavalisco, Patrick ; Correa Galvis, Viviana ; Armbruster, Ute ; Schöttler, Mark Aurel ; Jahns, Peter ; Krueger, Stephan ; Kunz, Hans-Henning</creator><creatorcontrib>Höhner, Ricarda ; Day, Philip M ; Zimmermann, Sandra E ; Lopez, Laura S ; Krämer, Moritz ; Giavalisco, Patrick ; Correa Galvis, Viviana ; Armbruster, Ute ; Schöttler, Mark Aurel ; Jahns, Peter ; Krueger, Stephan ; Kunz, Hans-Henning</creatorcontrib><description>During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiaa117</identifier><identifier>PMID: 33779763</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Focus Issue on Plant Redox Biology ; NAD - metabolism ; Phosphoglycerate Dehydrogenase - metabolism ; Photosynthesis</subject><ispartof>Plant physiology (Bethesda), 2021-05, Vol.186 (1), p.142-167</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</citedby><cites>FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</cites><orcidid>0000-0002-5340-1153 ; 0000-0001-8000-0817 ; 0000-0002-4636-1827 ; 0000-0002-8092-9148 ; 0000-0003-3210-0260 ; 0000-0003-4038-9199 ; 0000-0002-8814-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33779763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Höhner, Ricarda</creatorcontrib><creatorcontrib>Day, Philip M</creatorcontrib><creatorcontrib>Zimmermann, Sandra E</creatorcontrib><creatorcontrib>Lopez, Laura S</creatorcontrib><creatorcontrib>Krämer, Moritz</creatorcontrib><creatorcontrib>Giavalisco, Patrick</creatorcontrib><creatorcontrib>Correa Galvis, Viviana</creatorcontrib><creatorcontrib>Armbruster, Ute</creatorcontrib><creatorcontrib>Schöttler, Mark Aurel</creatorcontrib><creatorcontrib>Jahns, Peter</creatorcontrib><creatorcontrib>Krueger, Stephan</creatorcontrib><creatorcontrib>Kunz, Hans-Henning</creatorcontrib><title>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Focus Issue on Plant Redox Biology</subject><subject>NAD - metabolism</subject><subject>Phosphoglycerate Dehydrogenase - metabolism</subject><subject>Photosynthesis</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv2zAMhYWiQ5Olu-5Y6NhLWtGyLPkyIEi8ZEDQFEl2yEmQZXlRZ1uuZA_Iv5-HZMF2IEiQj48EPoQ-A3kCktLntmqPp_D80yoFwG_QGBiNphGLxS0aEzLURIh0hD6G8EYIAQrxHRpRynnKEzpG-a7zrlYVfpktVjj0bVtZU-D8hF9Xm90Qy_Vhnm1n-wwvstVhsd0ss5fZLqPYBqx9r-2wWzqP26PrXDg13dF0VuPW-KFbq0abe_ShVFUwny55gr5_zfbz1XS9WX6bz9ZTHbOkmwpltIggytPSgOYECsV0zmlutC51XPAiiSjXgie8KIEBLRLKhKA8BcFpAnSCvpx92z6vTaFN03lVydbbWvmTdMrK_yeNPcof7pcUwGLCo8Hg8WLg3XtvQidrG7SpKtUY1wcZMZIwSCkkg_TpLNXeheBNeT0DRP4BI89g5AXMsPDw73NX-V8S9Dc6l4u-</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Höhner, Ricarda</creator><creator>Day, Philip M</creator><creator>Zimmermann, Sandra E</creator><creator>Lopez, Laura S</creator><creator>Krämer, Moritz</creator><creator>Giavalisco, Patrick</creator><creator>Correa Galvis, Viviana</creator><creator>Armbruster, Ute</creator><creator>Schöttler, Mark Aurel</creator><creator>Jahns, Peter</creator><creator>Krueger, Stephan</creator><creator>Kunz, Hans-Henning</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5340-1153</orcidid><orcidid>https://orcid.org/0000-0001-8000-0817</orcidid><orcidid>https://orcid.org/0000-0002-4636-1827</orcidid><orcidid>https://orcid.org/0000-0002-8092-9148</orcidid><orcidid>https://orcid.org/0000-0003-3210-0260</orcidid><orcidid>https://orcid.org/0000-0003-4038-9199</orcidid><orcidid>https://orcid.org/0000-0002-8814-8207</orcidid></search><sort><creationdate>20210527</creationdate><title>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</title><author>Höhner, Ricarda ; Day, Philip M ; Zimmermann, Sandra E ; Lopez, Laura S ; Krämer, Moritz ; Giavalisco, Patrick ; Correa Galvis, Viviana ; Armbruster, Ute ; Schöttler, Mark Aurel ; Jahns, Peter ; Krueger, Stephan ; Kunz, Hans-Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8aec8212b9fe1c701da5cb73beccfc4d7d6237c8767df1513d635883791873613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Focus Issue on Plant Redox Biology</topic><topic>NAD - metabolism</topic><topic>Phosphoglycerate Dehydrogenase - metabolism</topic><topic>Photosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höhner, Ricarda</creatorcontrib><creatorcontrib>Day, Philip M</creatorcontrib><creatorcontrib>Zimmermann, Sandra E</creatorcontrib><creatorcontrib>Lopez, Laura S</creatorcontrib><creatorcontrib>Krämer, Moritz</creatorcontrib><creatorcontrib>Giavalisco, Patrick</creatorcontrib><creatorcontrib>Correa Galvis, Viviana</creatorcontrib><creatorcontrib>Armbruster, Ute</creatorcontrib><creatorcontrib>Schöttler, Mark Aurel</creatorcontrib><creatorcontrib>Jahns, Peter</creatorcontrib><creatorcontrib>Krueger, Stephan</creatorcontrib><creatorcontrib>Kunz, Hans-Henning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höhner, Ricarda</au><au>Day, Philip M</au><au>Zimmermann, Sandra E</au><au>Lopez, Laura S</au><au>Krämer, Moritz</au><au>Giavalisco, Patrick</au><au>Correa Galvis, Viviana</au><au>Armbruster, Ute</au><au>Schöttler, Mark Aurel</au><au>Jahns, Peter</au><au>Krueger, Stephan</au><au>Kunz, Hans-Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-05-27</date><risdate>2021</risdate><volume>186</volume><issue>1</issue><spage>142</spage><epage>167</epage><pages>142-167</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33779763</pmid><doi>10.1093/plphys/kiaa117</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5340-1153</orcidid><orcidid>https://orcid.org/0000-0001-8000-0817</orcidid><orcidid>https://orcid.org/0000-0002-4636-1827</orcidid><orcidid>https://orcid.org/0000-0002-8092-9148</orcidid><orcidid>https://orcid.org/0000-0003-3210-0260</orcidid><orcidid>https://orcid.org/0000-0003-4038-9199</orcidid><orcidid>https://orcid.org/0000-0002-8814-8207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2021-05, Vol.186 (1), p.142-167
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154072
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current)
subjects Arabidopsis - enzymology
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Focus Issue on Plant Redox Biology
NAD - metabolism
Phosphoglycerate Dehydrogenase - metabolism
Photosynthesis
title Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stromal%20NADH%20supplied%20by%20PHOSPHOGLYCERATE%20DEHYDROGENASE3%20is%20crucial%20for%20photosynthetic%20performance&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=H%C3%B6hner,%20Ricarda&rft.date=2021-05-27&rft.volume=186&rft.issue=1&rft.spage=142&rft.epage=167&rft.pages=142-167&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiaa117&rft_dat=%3Cproquest_pubme%3E2506519316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506519316&rft_id=info:pmid/33779763&rfr_iscdi=true