Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species

Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2021-05, Vol.186 (1), p.624-639
Hauptverfasser: Carmona-Salazar, Laura, Cahoon, Rebecca E, Gasca-Pineda, Jaime, González-Solís, Ariadna, Vera-Estrella, Rosario, Treviño, Victor, Cahoon, Edgar B, Gavilanes-Ruiz, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 1
container_start_page 624
container_title Plant physiology (Bethesda)
container_volume 186
creator Carmona-Salazar, Laura
Cahoon, Rebecca E
Gasca-Pineda, Jaime
González-Solís, Ariadna
Vera-Estrella, Rosario
Treviño, Victor
Cahoon, Edgar B
Gavilanes-Ruiz, Marina
description Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.
doi_str_mv 10.1093/plphys/kiab064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488556045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-24dd60fb4bbd5e1331942bdca6c4e1968104b6b893c2d696f84dff52f3fab7a43</originalsourceid><addsrcrecordid>eNpVUctuFDEQtBAR2QSuHJGPXDaxx4_1cEBCEQSkSMkhnC0_dwz2eHDPRMrfM2GXCE7dpa6qbnUh9JaSC0p6djnlaXiEy5_JWCL5C7ShgnXbTnD1Em0IWXuiVH-KzgB-EEIoo_wVOmVM7IikcoPKXTZQDDajxw_GLTWbhksotpkxYJiGNO5rTlPytQT4gF0tU4U0pzr-0aQR0n6YAa94HgJuNQdcIy4mjbiswC1PjjAFlwK8RifRZAhvjvUcff_y-f7q6_bm9vrb1aebrWM9mbcd916SaLm1XgTKGO15Z70z0vFAe6ko4VZa1TPXednLqLiPUXSRRWN3hrNz9PHgOy22BO_CODeT9dRSMe1RV5P0_5MxDXpfH7SighOxWw3eHw1a_bUEmHVJ4ELO61fqArrjSgkhCRcr9eJAda0CtBCf11CinzLSh4z0MaNV8O7f457pf0NhvwFqEpPP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488556045</pqid></control><display><type>article</type><title>Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species</title><source>MEDLINE</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Carmona-Salazar, Laura ; Cahoon, Rebecca E ; Gasca-Pineda, Jaime ; González-Solís, Ariadna ; Vera-Estrella, Rosario ; Treviño, Victor ; Cahoon, Edgar B ; Gavilanes-Ruiz, Marina</creator><creatorcontrib>Carmona-Salazar, Laura ; Cahoon, Rebecca E ; Gasca-Pineda, Jaime ; González-Solís, Ariadna ; Vera-Estrella, Rosario ; Treviño, Victor ; Cahoon, Edgar B ; Gavilanes-Ruiz, Marina</creatorcontrib><description>Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab064</identifier><identifier>PMID: 33570616</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Arabidopsis - physiology ; Lipidomics ; Plant Leaves - metabolism ; Regular Issue ; Sphingolipids - metabolism</subject><ispartof>Plant physiology (Bethesda), 2021-05, Vol.186 (1), p.624-639</ispartof><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-24dd60fb4bbd5e1331942bdca6c4e1968104b6b893c2d696f84dff52f3fab7a43</citedby><cites>FETCH-LOGICAL-c390t-24dd60fb4bbd5e1331942bdca6c4e1968104b6b893c2d696f84dff52f3fab7a43</cites><orcidid>0000-0001-9192-824X ; 0000-0003-3392-5766 ; 0000-0002-7472-9844 ; 0000-0002-4779-7729 ; 0000-0002-7277-1176 ; 0000-0002-5173-3330 ; 0000-0002-3776-1351 ; 0000-0002-7110-5067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33570616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carmona-Salazar, Laura</creatorcontrib><creatorcontrib>Cahoon, Rebecca E</creatorcontrib><creatorcontrib>Gasca-Pineda, Jaime</creatorcontrib><creatorcontrib>González-Solís, Ariadna</creatorcontrib><creatorcontrib>Vera-Estrella, Rosario</creatorcontrib><creatorcontrib>Treviño, Victor</creatorcontrib><creatorcontrib>Cahoon, Edgar B</creatorcontrib><creatorcontrib>Gavilanes-Ruiz, Marina</creatorcontrib><title>Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.</description><subject>Arabidopsis - physiology</subject><subject>Lipidomics</subject><subject>Plant Leaves - metabolism</subject><subject>Regular Issue</subject><subject>Sphingolipids - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctuFDEQtBAR2QSuHJGPXDaxx4_1cEBCEQSkSMkhnC0_dwz2eHDPRMrfM2GXCE7dpa6qbnUh9JaSC0p6djnlaXiEy5_JWCL5C7ShgnXbTnD1Em0IWXuiVH-KzgB-EEIoo_wVOmVM7IikcoPKXTZQDDajxw_GLTWbhksotpkxYJiGNO5rTlPytQT4gF0tU4U0pzr-0aQR0n6YAa94HgJuNQdcIy4mjbiswC1PjjAFlwK8RifRZAhvjvUcff_y-f7q6_bm9vrb1aebrWM9mbcd916SaLm1XgTKGO15Z70z0vFAe6ko4VZa1TPXednLqLiPUXSRRWN3hrNz9PHgOy22BO_CODeT9dRSMe1RV5P0_5MxDXpfH7SighOxWw3eHw1a_bUEmHVJ4ELO61fqArrjSgkhCRcr9eJAda0CtBCf11CinzLSh4z0MaNV8O7f457pf0NhvwFqEpPP</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Carmona-Salazar, Laura</creator><creator>Cahoon, Rebecca E</creator><creator>Gasca-Pineda, Jaime</creator><creator>González-Solís, Ariadna</creator><creator>Vera-Estrella, Rosario</creator><creator>Treviño, Victor</creator><creator>Cahoon, Edgar B</creator><creator>Gavilanes-Ruiz, Marina</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9192-824X</orcidid><orcidid>https://orcid.org/0000-0003-3392-5766</orcidid><orcidid>https://orcid.org/0000-0002-7472-9844</orcidid><orcidid>https://orcid.org/0000-0002-4779-7729</orcidid><orcidid>https://orcid.org/0000-0002-7277-1176</orcidid><orcidid>https://orcid.org/0000-0002-5173-3330</orcidid><orcidid>https://orcid.org/0000-0002-3776-1351</orcidid><orcidid>https://orcid.org/0000-0002-7110-5067</orcidid></search><sort><creationdate>20210527</creationdate><title>Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species</title><author>Carmona-Salazar, Laura ; Cahoon, Rebecca E ; Gasca-Pineda, Jaime ; González-Solís, Ariadna ; Vera-Estrella, Rosario ; Treviño, Victor ; Cahoon, Edgar B ; Gavilanes-Ruiz, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-24dd60fb4bbd5e1331942bdca6c4e1968104b6b893c2d696f84dff52f3fab7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabidopsis - physiology</topic><topic>Lipidomics</topic><topic>Plant Leaves - metabolism</topic><topic>Regular Issue</topic><topic>Sphingolipids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmona-Salazar, Laura</creatorcontrib><creatorcontrib>Cahoon, Rebecca E</creatorcontrib><creatorcontrib>Gasca-Pineda, Jaime</creatorcontrib><creatorcontrib>González-Solís, Ariadna</creatorcontrib><creatorcontrib>Vera-Estrella, Rosario</creatorcontrib><creatorcontrib>Treviño, Victor</creatorcontrib><creatorcontrib>Cahoon, Edgar B</creatorcontrib><creatorcontrib>Gavilanes-Ruiz, Marina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmona-Salazar, Laura</au><au>Cahoon, Rebecca E</au><au>Gasca-Pineda, Jaime</au><au>González-Solís, Ariadna</au><au>Vera-Estrella, Rosario</au><au>Treviño, Victor</au><au>Cahoon, Edgar B</au><au>Gavilanes-Ruiz, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-05-27</date><risdate>2021</risdate><volume>186</volume><issue>1</issue><spage>624</spage><epage>639</epage><pages>624-639</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33570616</pmid><doi>10.1093/plphys/kiab064</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9192-824X</orcidid><orcidid>https://orcid.org/0000-0003-3392-5766</orcidid><orcidid>https://orcid.org/0000-0002-7472-9844</orcidid><orcidid>https://orcid.org/0000-0002-4779-7729</orcidid><orcidid>https://orcid.org/0000-0002-7277-1176</orcidid><orcidid>https://orcid.org/0000-0002-5173-3330</orcidid><orcidid>https://orcid.org/0000-0002-3776-1351</orcidid><orcidid>https://orcid.org/0000-0002-7110-5067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2021-05, Vol.186 (1), p.624-639
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154057
source MEDLINE; EZB Electronic Journals Library; Oxford Journals
subjects Arabidopsis - physiology
Lipidomics
Plant Leaves - metabolism
Regular Issue
Sphingolipids - metabolism
title Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20and%20vacuolar%20membrane%20sphingolipidomes:%20composition%20and%20insights%20on%20the%20role%20of%20main%20molecular%20species&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Carmona-Salazar,%20Laura&rft.date=2021-05-27&rft.volume=186&rft.issue=1&rft.spage=624&rft.epage=639&rft.pages=624-639&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab064&rft_dat=%3Cproquest_pubme%3E2488556045%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488556045&rft_id=info:pmid/33570616&rfr_iscdi=true