Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network

The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2021-02, Vol.109 (3), p.545-559.e8
Hauptverfasser: Whitesell, Jennifer D., Liska, Adam, Coletta, Ludovico, Hirokawa, Karla E., Bohn, Phillip, Williford, Ali, Groblewski, Peter A., Graddis, Nile, Kuan, Leonard, Knox, Joseph E., Ho, Anh, Wakeman, Wayne, Nicovich, Philip R., Nguyen, Thuc Nghi, van Velthoven, Cindy T.J., Garren, Emma, Fong, Olivia, Naeemi, Maitham, Henry, Alex M., Dee, Nick, Smith, Kimberly A., Levi, Boaz, Feng, David, Ng, Lydia, Tasic, Bosiljka, Zeng, Hongkui, Mihalas, Stefan, Gozzi, Alessandro, Harris, Julie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559.e8
container_issue 3
container_start_page 545
container_title Neuron (Cambridge, Mass.)
container_volume 109
creator Whitesell, Jennifer D.
Liska, Adam
Coletta, Ludovico
Hirokawa, Karla E.
Bohn, Phillip
Williford, Ali
Groblewski, Peter A.
Graddis, Nile
Kuan, Leonard
Knox, Joseph E.
Ho, Anh
Wakeman, Wayne
Nicovich, Philip R.
Nguyen, Thuc Nghi
van Velthoven, Cindy T.J.
Garren, Emma
Fong, Olivia
Naeemi, Maitham
Henry, Alex M.
Dee, Nick
Smith, Kimberly A.
Levi, Boaz
Feng, David
Ng, Lydia
Tasic, Bosiljka
Zeng, Hongkui
Mihalas, Stefan
Gozzi, Alessandro
Harris, Julie A.
description The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN. [Display omitted] •Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.
doi_str_mv 10.1016/j.neuron.2020.11.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627320308898</els_id><sourcerecordid>2486125158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</originalsourceid><addsrcrecordid>eNp9kUtvEzEUha0KRNPCP0DIEhsWneA7noe9qVSFpxRaCUq3lmPfaZ1O7GDPpMq_x1FKaVmw8uvc43vuR8hrYFNg0LxfTj2OMfhpycp8BVMGcEAmwGRbVCDlMzJhQjZFU7b8kByltGQMqlrCC3LIeSlZy2FCrr7jtQte9yd0rrcYT6j2ls6w74vL7RqLH2s0rnOGzoL3aAa3ccOWho4ON0i_hTEh_YCdHvshnyzScxzuQrx9SZ53uk_46n49Jj8_fbycfSnmF5-_zs7mhWmYGAotOJqaw2JRV7a1lTG2Erxieds23FjkjHNRGtQM2xrqtutQS61raRZSWs6Pyenedz0uVmgN-iHqXq2jW-m4VUE79fTFuxt1HTZKQJ2tIRu8uzeI4deIaVArl0yOrz3mdKqsGtHUgpc76dt_pMswxjy6nUo0UOYGRVZVe5WJIaWI3UMzwNQOnFqqPTi1A6cAVAaXy948DvJQ9IfU36SYx7lxGFUyDr1B62Lmomxw___hNzSVq-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486125158</pqid></control><display><type>article</type><title>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Whitesell, Jennifer D. ; Liska, Adam ; Coletta, Ludovico ; Hirokawa, Karla E. ; Bohn, Phillip ; Williford, Ali ; Groblewski, Peter A. ; Graddis, Nile ; Kuan, Leonard ; Knox, Joseph E. ; Ho, Anh ; Wakeman, Wayne ; Nicovich, Philip R. ; Nguyen, Thuc Nghi ; van Velthoven, Cindy T.J. ; Garren, Emma ; Fong, Olivia ; Naeemi, Maitham ; Henry, Alex M. ; Dee, Nick ; Smith, Kimberly A. ; Levi, Boaz ; Feng, David ; Ng, Lydia ; Tasic, Bosiljka ; Zeng, Hongkui ; Mihalas, Stefan ; Gozzi, Alessandro ; Harris, Julie A.</creator><creatorcontrib>Whitesell, Jennifer D. ; Liska, Adam ; Coletta, Ludovico ; Hirokawa, Karla E. ; Bohn, Phillip ; Williford, Ali ; Groblewski, Peter A. ; Graddis, Nile ; Kuan, Leonard ; Knox, Joseph E. ; Ho, Anh ; Wakeman, Wayne ; Nicovich, Philip R. ; Nguyen, Thuc Nghi ; van Velthoven, Cindy T.J. ; Garren, Emma ; Fong, Olivia ; Naeemi, Maitham ; Henry, Alex M. ; Dee, Nick ; Smith, Kimberly A. ; Levi, Boaz ; Feng, David ; Ng, Lydia ; Tasic, Bosiljka ; Zeng, Hongkui ; Mihalas, Stefan ; Gozzi, Alessandro ; Harris, Julie A.</creatorcontrib><description>The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN. [Display omitted] •Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.11.011</identifier><identifier>PMID: 33290731</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; axonal projections ; Brain ; Brain - cytology ; Brain - diagnostic imaging ; Brain mapping ; connectivity ; Connectome ; cortical connectome ; Default mode network ; Default Mode Network - cytology ; Default Mode Network - diagnostic imaging ; DMN ; Experiments ; Functional magnetic resonance imaging ; Gene expression ; Gene mapping ; Magnetic Resonance Imaging ; Mice ; Nerve Net - cytology ; Nerve Net - diagnostic imaging ; Neural networks ; Neuroimaging ; Neurons - cytology ; Neurons - physiology ; projection neuron types ; retrosplenial cortex ; single cell transcriptomics ; viral tracer</subject><ispartof>Neuron (Cambridge, Mass.), 2021-02, Vol.109 (3), p.545-559.e8</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2021. The Authors</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</citedby><cites>FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2020.11.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33290731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitesell, Jennifer D.</creatorcontrib><creatorcontrib>Liska, Adam</creatorcontrib><creatorcontrib>Coletta, Ludovico</creatorcontrib><creatorcontrib>Hirokawa, Karla E.</creatorcontrib><creatorcontrib>Bohn, Phillip</creatorcontrib><creatorcontrib>Williford, Ali</creatorcontrib><creatorcontrib>Groblewski, Peter A.</creatorcontrib><creatorcontrib>Graddis, Nile</creatorcontrib><creatorcontrib>Kuan, Leonard</creatorcontrib><creatorcontrib>Knox, Joseph E.</creatorcontrib><creatorcontrib>Ho, Anh</creatorcontrib><creatorcontrib>Wakeman, Wayne</creatorcontrib><creatorcontrib>Nicovich, Philip R.</creatorcontrib><creatorcontrib>Nguyen, Thuc Nghi</creatorcontrib><creatorcontrib>van Velthoven, Cindy T.J.</creatorcontrib><creatorcontrib>Garren, Emma</creatorcontrib><creatorcontrib>Fong, Olivia</creatorcontrib><creatorcontrib>Naeemi, Maitham</creatorcontrib><creatorcontrib>Henry, Alex M.</creatorcontrib><creatorcontrib>Dee, Nick</creatorcontrib><creatorcontrib>Smith, Kimberly A.</creatorcontrib><creatorcontrib>Levi, Boaz</creatorcontrib><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Ng, Lydia</creatorcontrib><creatorcontrib>Tasic, Bosiljka</creatorcontrib><creatorcontrib>Zeng, Hongkui</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Harris, Julie A.</creatorcontrib><title>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN. [Display omitted] •Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.</description><subject>Animals</subject><subject>axonal projections</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>connectivity</subject><subject>Connectome</subject><subject>cortical connectome</subject><subject>Default mode network</subject><subject>Default Mode Network - cytology</subject><subject>Default Mode Network - diagnostic imaging</subject><subject>DMN</subject><subject>Experiments</subject><subject>Functional magnetic resonance imaging</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Magnetic Resonance Imaging</subject><subject>Mice</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>projection neuron types</subject><subject>retrosplenial cortex</subject><subject>single cell transcriptomics</subject><subject>viral tracer</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEUha0KRNPCP0DIEhsWneA7noe9qVSFpxRaCUq3lmPfaZ1O7GDPpMq_x1FKaVmw8uvc43vuR8hrYFNg0LxfTj2OMfhpycp8BVMGcEAmwGRbVCDlMzJhQjZFU7b8kByltGQMqlrCC3LIeSlZy2FCrr7jtQte9yd0rrcYT6j2ls6w74vL7RqLH2s0rnOGzoL3aAa3ccOWho4ON0i_hTEh_YCdHvshnyzScxzuQrx9SZ53uk_46n49Jj8_fbycfSnmF5-_zs7mhWmYGAotOJqaw2JRV7a1lTG2Erxieds23FjkjHNRGtQM2xrqtutQS61raRZSWs6Pyenedz0uVmgN-iHqXq2jW-m4VUE79fTFuxt1HTZKQJ2tIRu8uzeI4deIaVArl0yOrz3mdKqsGtHUgpc76dt_pMswxjy6nUo0UOYGRVZVe5WJIaWI3UMzwNQOnFqqPTi1A6cAVAaXy948DvJQ9IfU36SYx7lxGFUyDr1B62Lmomxw___hNzSVq-c</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Whitesell, Jennifer D.</creator><creator>Liska, Adam</creator><creator>Coletta, Ludovico</creator><creator>Hirokawa, Karla E.</creator><creator>Bohn, Phillip</creator><creator>Williford, Ali</creator><creator>Groblewski, Peter A.</creator><creator>Graddis, Nile</creator><creator>Kuan, Leonard</creator><creator>Knox, Joseph E.</creator><creator>Ho, Anh</creator><creator>Wakeman, Wayne</creator><creator>Nicovich, Philip R.</creator><creator>Nguyen, Thuc Nghi</creator><creator>van Velthoven, Cindy T.J.</creator><creator>Garren, Emma</creator><creator>Fong, Olivia</creator><creator>Naeemi, Maitham</creator><creator>Henry, Alex M.</creator><creator>Dee, Nick</creator><creator>Smith, Kimberly A.</creator><creator>Levi, Boaz</creator><creator>Feng, David</creator><creator>Ng, Lydia</creator><creator>Tasic, Bosiljka</creator><creator>Zeng, Hongkui</creator><creator>Mihalas, Stefan</creator><creator>Gozzi, Alessandro</creator><creator>Harris, Julie A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210203</creationdate><title>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</title><author>Whitesell, Jennifer D. ; Liska, Adam ; Coletta, Ludovico ; Hirokawa, Karla E. ; Bohn, Phillip ; Williford, Ali ; Groblewski, Peter A. ; Graddis, Nile ; Kuan, Leonard ; Knox, Joseph E. ; Ho, Anh ; Wakeman, Wayne ; Nicovich, Philip R. ; Nguyen, Thuc Nghi ; van Velthoven, Cindy T.J. ; Garren, Emma ; Fong, Olivia ; Naeemi, Maitham ; Henry, Alex M. ; Dee, Nick ; Smith, Kimberly A. ; Levi, Boaz ; Feng, David ; Ng, Lydia ; Tasic, Bosiljka ; Zeng, Hongkui ; Mihalas, Stefan ; Gozzi, Alessandro ; Harris, Julie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>axonal projections</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>connectivity</topic><topic>Connectome</topic><topic>cortical connectome</topic><topic>Default mode network</topic><topic>Default Mode Network - cytology</topic><topic>Default Mode Network - diagnostic imaging</topic><topic>DMN</topic><topic>Experiments</topic><topic>Functional magnetic resonance imaging</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Magnetic Resonance Imaging</topic><topic>Mice</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>projection neuron types</topic><topic>retrosplenial cortex</topic><topic>single cell transcriptomics</topic><topic>viral tracer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitesell, Jennifer D.</creatorcontrib><creatorcontrib>Liska, Adam</creatorcontrib><creatorcontrib>Coletta, Ludovico</creatorcontrib><creatorcontrib>Hirokawa, Karla E.</creatorcontrib><creatorcontrib>Bohn, Phillip</creatorcontrib><creatorcontrib>Williford, Ali</creatorcontrib><creatorcontrib>Groblewski, Peter A.</creatorcontrib><creatorcontrib>Graddis, Nile</creatorcontrib><creatorcontrib>Kuan, Leonard</creatorcontrib><creatorcontrib>Knox, Joseph E.</creatorcontrib><creatorcontrib>Ho, Anh</creatorcontrib><creatorcontrib>Wakeman, Wayne</creatorcontrib><creatorcontrib>Nicovich, Philip R.</creatorcontrib><creatorcontrib>Nguyen, Thuc Nghi</creatorcontrib><creatorcontrib>van Velthoven, Cindy T.J.</creatorcontrib><creatorcontrib>Garren, Emma</creatorcontrib><creatorcontrib>Fong, Olivia</creatorcontrib><creatorcontrib>Naeemi, Maitham</creatorcontrib><creatorcontrib>Henry, Alex M.</creatorcontrib><creatorcontrib>Dee, Nick</creatorcontrib><creatorcontrib>Smith, Kimberly A.</creatorcontrib><creatorcontrib>Levi, Boaz</creatorcontrib><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Ng, Lydia</creatorcontrib><creatorcontrib>Tasic, Bosiljka</creatorcontrib><creatorcontrib>Zeng, Hongkui</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Harris, Julie A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitesell, Jennifer D.</au><au>Liska, Adam</au><au>Coletta, Ludovico</au><au>Hirokawa, Karla E.</au><au>Bohn, Phillip</au><au>Williford, Ali</au><au>Groblewski, Peter A.</au><au>Graddis, Nile</au><au>Kuan, Leonard</au><au>Knox, Joseph E.</au><au>Ho, Anh</au><au>Wakeman, Wayne</au><au>Nicovich, Philip R.</au><au>Nguyen, Thuc Nghi</au><au>van Velthoven, Cindy T.J.</au><au>Garren, Emma</au><au>Fong, Olivia</au><au>Naeemi, Maitham</au><au>Henry, Alex M.</au><au>Dee, Nick</au><au>Smith, Kimberly A.</au><au>Levi, Boaz</au><au>Feng, David</au><au>Ng, Lydia</au><au>Tasic, Bosiljka</au><au>Zeng, Hongkui</au><au>Mihalas, Stefan</au><au>Gozzi, Alessandro</au><au>Harris, Julie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2021-02-03</date><risdate>2021</risdate><volume>109</volume><issue>3</issue><spage>545</spage><epage>559.e8</epage><pages>545-559.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN. [Display omitted] •Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33290731</pmid><doi>10.1016/j.neuron.2020.11.011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2021-02, Vol.109 (3), p.545-559.e8
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150331
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
axonal projections
Brain
Brain - cytology
Brain - diagnostic imaging
Brain mapping
connectivity
Connectome
cortical connectome
Default mode network
Default Mode Network - cytology
Default Mode Network - diagnostic imaging
DMN
Experiments
Functional magnetic resonance imaging
Gene expression
Gene mapping
Magnetic Resonance Imaging
Mice
Nerve Net - cytology
Nerve Net - diagnostic imaging
Neural networks
Neuroimaging
Neurons - cytology
Neurons - physiology
projection neuron types
retrosplenial cortex
single cell transcriptomics
viral tracer
title Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional,%20Layer,%20and%20Cell-Type-Specific%20Connectivity%20of%20the%20Mouse%20Default%20Mode%20Network&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Whitesell,%20Jennifer%20D.&rft.date=2021-02-03&rft.volume=109&rft.issue=3&rft.spage=545&rft.epage=559.e8&rft.pages=545-559.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.11.011&rft_dat=%3Cproquest_pubme%3E2486125158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486125158&rft_id=info:pmid/33290731&rft_els_id=S0896627320308898&rfr_iscdi=true