Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network
The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to invest...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2021-02, Vol.109 (3), p.545-559.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 559.e8 |
---|---|
container_issue | 3 |
container_start_page | 545 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 109 |
creator | Whitesell, Jennifer D. Liska, Adam Coletta, Ludovico Hirokawa, Karla E. Bohn, Phillip Williford, Ali Groblewski, Peter A. Graddis, Nile Kuan, Leonard Knox, Joseph E. Ho, Anh Wakeman, Wayne Nicovich, Philip R. Nguyen, Thuc Nghi van Velthoven, Cindy T.J. Garren, Emma Fong, Olivia Naeemi, Maitham Henry, Alex M. Dee, Nick Smith, Kimberly A. Levi, Boaz Feng, David Ng, Lydia Tasic, Bosiljka Zeng, Hongkui Mihalas, Stefan Gozzi, Alessandro Harris, Julie A. |
description | The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.
[Display omitted]
•Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons
The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network. |
doi_str_mv | 10.1016/j.neuron.2020.11.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627320308898</els_id><sourcerecordid>2486125158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</originalsourceid><addsrcrecordid>eNp9kUtvEzEUha0KRNPCP0DIEhsWneA7noe9qVSFpxRaCUq3lmPfaZ1O7GDPpMq_x1FKaVmw8uvc43vuR8hrYFNg0LxfTj2OMfhpycp8BVMGcEAmwGRbVCDlMzJhQjZFU7b8kByltGQMqlrCC3LIeSlZy2FCrr7jtQte9yd0rrcYT6j2ls6w74vL7RqLH2s0rnOGzoL3aAa3ccOWho4ON0i_hTEh_YCdHvshnyzScxzuQrx9SZ53uk_46n49Jj8_fbycfSnmF5-_zs7mhWmYGAotOJqaw2JRV7a1lTG2Erxieds23FjkjHNRGtQM2xrqtutQS61raRZSWs6Pyenedz0uVmgN-iHqXq2jW-m4VUE79fTFuxt1HTZKQJ2tIRu8uzeI4deIaVArl0yOrz3mdKqsGtHUgpc76dt_pMswxjy6nUo0UOYGRVZVe5WJIaWI3UMzwNQOnFqqPTi1A6cAVAaXy948DvJQ9IfU36SYx7lxGFUyDr1B62Lmomxw___hNzSVq-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486125158</pqid></control><display><type>article</type><title>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Whitesell, Jennifer D. ; Liska, Adam ; Coletta, Ludovico ; Hirokawa, Karla E. ; Bohn, Phillip ; Williford, Ali ; Groblewski, Peter A. ; Graddis, Nile ; Kuan, Leonard ; Knox, Joseph E. ; Ho, Anh ; Wakeman, Wayne ; Nicovich, Philip R. ; Nguyen, Thuc Nghi ; van Velthoven, Cindy T.J. ; Garren, Emma ; Fong, Olivia ; Naeemi, Maitham ; Henry, Alex M. ; Dee, Nick ; Smith, Kimberly A. ; Levi, Boaz ; Feng, David ; Ng, Lydia ; Tasic, Bosiljka ; Zeng, Hongkui ; Mihalas, Stefan ; Gozzi, Alessandro ; Harris, Julie A.</creator><creatorcontrib>Whitesell, Jennifer D. ; Liska, Adam ; Coletta, Ludovico ; Hirokawa, Karla E. ; Bohn, Phillip ; Williford, Ali ; Groblewski, Peter A. ; Graddis, Nile ; Kuan, Leonard ; Knox, Joseph E. ; Ho, Anh ; Wakeman, Wayne ; Nicovich, Philip R. ; Nguyen, Thuc Nghi ; van Velthoven, Cindy T.J. ; Garren, Emma ; Fong, Olivia ; Naeemi, Maitham ; Henry, Alex M. ; Dee, Nick ; Smith, Kimberly A. ; Levi, Boaz ; Feng, David ; Ng, Lydia ; Tasic, Bosiljka ; Zeng, Hongkui ; Mihalas, Stefan ; Gozzi, Alessandro ; Harris, Julie A.</creatorcontrib><description>The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.
[Display omitted]
•Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons
The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.11.011</identifier><identifier>PMID: 33290731</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; axonal projections ; Brain ; Brain - cytology ; Brain - diagnostic imaging ; Brain mapping ; connectivity ; Connectome ; cortical connectome ; Default mode network ; Default Mode Network - cytology ; Default Mode Network - diagnostic imaging ; DMN ; Experiments ; Functional magnetic resonance imaging ; Gene expression ; Gene mapping ; Magnetic Resonance Imaging ; Mice ; Nerve Net - cytology ; Nerve Net - diagnostic imaging ; Neural networks ; Neuroimaging ; Neurons - cytology ; Neurons - physiology ; projection neuron types ; retrosplenial cortex ; single cell transcriptomics ; viral tracer</subject><ispartof>Neuron (Cambridge, Mass.), 2021-02, Vol.109 (3), p.545-559.e8</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2021. The Authors</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</citedby><cites>FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2020.11.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33290731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitesell, Jennifer D.</creatorcontrib><creatorcontrib>Liska, Adam</creatorcontrib><creatorcontrib>Coletta, Ludovico</creatorcontrib><creatorcontrib>Hirokawa, Karla E.</creatorcontrib><creatorcontrib>Bohn, Phillip</creatorcontrib><creatorcontrib>Williford, Ali</creatorcontrib><creatorcontrib>Groblewski, Peter A.</creatorcontrib><creatorcontrib>Graddis, Nile</creatorcontrib><creatorcontrib>Kuan, Leonard</creatorcontrib><creatorcontrib>Knox, Joseph E.</creatorcontrib><creatorcontrib>Ho, Anh</creatorcontrib><creatorcontrib>Wakeman, Wayne</creatorcontrib><creatorcontrib>Nicovich, Philip R.</creatorcontrib><creatorcontrib>Nguyen, Thuc Nghi</creatorcontrib><creatorcontrib>van Velthoven, Cindy T.J.</creatorcontrib><creatorcontrib>Garren, Emma</creatorcontrib><creatorcontrib>Fong, Olivia</creatorcontrib><creatorcontrib>Naeemi, Maitham</creatorcontrib><creatorcontrib>Henry, Alex M.</creatorcontrib><creatorcontrib>Dee, Nick</creatorcontrib><creatorcontrib>Smith, Kimberly A.</creatorcontrib><creatorcontrib>Levi, Boaz</creatorcontrib><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Ng, Lydia</creatorcontrib><creatorcontrib>Tasic, Bosiljka</creatorcontrib><creatorcontrib>Zeng, Hongkui</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Harris, Julie A.</creatorcontrib><title>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.
[Display omitted]
•Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons
The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.</description><subject>Animals</subject><subject>axonal projections</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>connectivity</subject><subject>Connectome</subject><subject>cortical connectome</subject><subject>Default mode network</subject><subject>Default Mode Network - cytology</subject><subject>Default Mode Network - diagnostic imaging</subject><subject>DMN</subject><subject>Experiments</subject><subject>Functional magnetic resonance imaging</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Magnetic Resonance Imaging</subject><subject>Mice</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>projection neuron types</subject><subject>retrosplenial cortex</subject><subject>single cell transcriptomics</subject><subject>viral tracer</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEUha0KRNPCP0DIEhsWneA7noe9qVSFpxRaCUq3lmPfaZ1O7GDPpMq_x1FKaVmw8uvc43vuR8hrYFNg0LxfTj2OMfhpycp8BVMGcEAmwGRbVCDlMzJhQjZFU7b8kByltGQMqlrCC3LIeSlZy2FCrr7jtQte9yd0rrcYT6j2ls6w74vL7RqLH2s0rnOGzoL3aAa3ccOWho4ON0i_hTEh_YCdHvshnyzScxzuQrx9SZ53uk_46n49Jj8_fbycfSnmF5-_zs7mhWmYGAotOJqaw2JRV7a1lTG2Erxieds23FjkjHNRGtQM2xrqtutQS61raRZSWs6Pyenedz0uVmgN-iHqXq2jW-m4VUE79fTFuxt1HTZKQJ2tIRu8uzeI4deIaVArl0yOrz3mdKqsGtHUgpc76dt_pMswxjy6nUo0UOYGRVZVe5WJIaWI3UMzwNQOnFqqPTi1A6cAVAaXy948DvJQ9IfU36SYx7lxGFUyDr1B62Lmomxw___hNzSVq-c</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Whitesell, Jennifer D.</creator><creator>Liska, Adam</creator><creator>Coletta, Ludovico</creator><creator>Hirokawa, Karla E.</creator><creator>Bohn, Phillip</creator><creator>Williford, Ali</creator><creator>Groblewski, Peter A.</creator><creator>Graddis, Nile</creator><creator>Kuan, Leonard</creator><creator>Knox, Joseph E.</creator><creator>Ho, Anh</creator><creator>Wakeman, Wayne</creator><creator>Nicovich, Philip R.</creator><creator>Nguyen, Thuc Nghi</creator><creator>van Velthoven, Cindy T.J.</creator><creator>Garren, Emma</creator><creator>Fong, Olivia</creator><creator>Naeemi, Maitham</creator><creator>Henry, Alex M.</creator><creator>Dee, Nick</creator><creator>Smith, Kimberly A.</creator><creator>Levi, Boaz</creator><creator>Feng, David</creator><creator>Ng, Lydia</creator><creator>Tasic, Bosiljka</creator><creator>Zeng, Hongkui</creator><creator>Mihalas, Stefan</creator><creator>Gozzi, Alessandro</creator><creator>Harris, Julie A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210203</creationdate><title>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</title><author>Whitesell, Jennifer D. ; Liska, Adam ; Coletta, Ludovico ; Hirokawa, Karla E. ; Bohn, Phillip ; Williford, Ali ; Groblewski, Peter A. ; Graddis, Nile ; Kuan, Leonard ; Knox, Joseph E. ; Ho, Anh ; Wakeman, Wayne ; Nicovich, Philip R. ; Nguyen, Thuc Nghi ; van Velthoven, Cindy T.J. ; Garren, Emma ; Fong, Olivia ; Naeemi, Maitham ; Henry, Alex M. ; Dee, Nick ; Smith, Kimberly A. ; Levi, Boaz ; Feng, David ; Ng, Lydia ; Tasic, Bosiljka ; Zeng, Hongkui ; Mihalas, Stefan ; Gozzi, Alessandro ; Harris, Julie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-a83ec531bb54d7d4ccd483407d4763cde303382cea0e75157ffea9aa59cb99d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>axonal projections</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>connectivity</topic><topic>Connectome</topic><topic>cortical connectome</topic><topic>Default mode network</topic><topic>Default Mode Network - cytology</topic><topic>Default Mode Network - diagnostic imaging</topic><topic>DMN</topic><topic>Experiments</topic><topic>Functional magnetic resonance imaging</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Magnetic Resonance Imaging</topic><topic>Mice</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>projection neuron types</topic><topic>retrosplenial cortex</topic><topic>single cell transcriptomics</topic><topic>viral tracer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitesell, Jennifer D.</creatorcontrib><creatorcontrib>Liska, Adam</creatorcontrib><creatorcontrib>Coletta, Ludovico</creatorcontrib><creatorcontrib>Hirokawa, Karla E.</creatorcontrib><creatorcontrib>Bohn, Phillip</creatorcontrib><creatorcontrib>Williford, Ali</creatorcontrib><creatorcontrib>Groblewski, Peter A.</creatorcontrib><creatorcontrib>Graddis, Nile</creatorcontrib><creatorcontrib>Kuan, Leonard</creatorcontrib><creatorcontrib>Knox, Joseph E.</creatorcontrib><creatorcontrib>Ho, Anh</creatorcontrib><creatorcontrib>Wakeman, Wayne</creatorcontrib><creatorcontrib>Nicovich, Philip R.</creatorcontrib><creatorcontrib>Nguyen, Thuc Nghi</creatorcontrib><creatorcontrib>van Velthoven, Cindy T.J.</creatorcontrib><creatorcontrib>Garren, Emma</creatorcontrib><creatorcontrib>Fong, Olivia</creatorcontrib><creatorcontrib>Naeemi, Maitham</creatorcontrib><creatorcontrib>Henry, Alex M.</creatorcontrib><creatorcontrib>Dee, Nick</creatorcontrib><creatorcontrib>Smith, Kimberly A.</creatorcontrib><creatorcontrib>Levi, Boaz</creatorcontrib><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Ng, Lydia</creatorcontrib><creatorcontrib>Tasic, Bosiljka</creatorcontrib><creatorcontrib>Zeng, Hongkui</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Harris, Julie A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitesell, Jennifer D.</au><au>Liska, Adam</au><au>Coletta, Ludovico</au><au>Hirokawa, Karla E.</au><au>Bohn, Phillip</au><au>Williford, Ali</au><au>Groblewski, Peter A.</au><au>Graddis, Nile</au><au>Kuan, Leonard</au><au>Knox, Joseph E.</au><au>Ho, Anh</au><au>Wakeman, Wayne</au><au>Nicovich, Philip R.</au><au>Nguyen, Thuc Nghi</au><au>van Velthoven, Cindy T.J.</au><au>Garren, Emma</au><au>Fong, Olivia</au><au>Naeemi, Maitham</au><au>Henry, Alex M.</au><au>Dee, Nick</au><au>Smith, Kimberly A.</au><au>Levi, Boaz</au><au>Feng, David</au><au>Ng, Lydia</au><au>Tasic, Bosiljka</au><au>Zeng, Hongkui</au><au>Mihalas, Stefan</au><au>Gozzi, Alessandro</au><au>Harris, Julie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2021-02-03</date><risdate>2021</risdate><volume>109</volume><issue>3</issue><spage>545</spage><epage>559.e8</epage><pages>545-559.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.
[Display omitted]
•Mouse resting-state default mode network anatomy described at high resolution in 3D•Systematic axon tracing shows cortical DMN regions are preferentially interconnected•Layer 2/3 DMN neurons project mostly in the DMN; layer 5 neurons project in and out•Retrosplenial cortex contains distinct types of in- and out-DMN projection neurons
The default mode network is vulnerable to brain disorders, but details of its anatomy and connectivity are coarse. Whitesell et al. use modern neuroanatomical tools in the mouse, including whole-brain imaging and viral tracing, to provide high-resolution anatomical descriptions and identify cell type correlates of this conserved brain network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33290731</pmid><doi>10.1016/j.neuron.2020.11.011</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2021-02, Vol.109 (3), p.545-559.e8 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150331 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals axonal projections Brain Brain - cytology Brain - diagnostic imaging Brain mapping connectivity Connectome cortical connectome Default mode network Default Mode Network - cytology Default Mode Network - diagnostic imaging DMN Experiments Functional magnetic resonance imaging Gene expression Gene mapping Magnetic Resonance Imaging Mice Nerve Net - cytology Nerve Net - diagnostic imaging Neural networks Neuroimaging Neurons - cytology Neurons - physiology projection neuron types retrosplenial cortex single cell transcriptomics viral tracer |
title | Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional,%20Layer,%20and%20Cell-Type-Specific%20Connectivity%20of%20the%20Mouse%20Default%20Mode%20Network&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Whitesell,%20Jennifer%20D.&rft.date=2021-02-03&rft.volume=109&rft.issue=3&rft.spage=545&rft.epage=559.e8&rft.pages=545-559.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.11.011&rft_dat=%3Cproquest_pubme%3E2486125158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486125158&rft_id=info:pmid/33290731&rft_els_id=S0896627320308898&rfr_iscdi=true |