Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse
Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2021-08, Vol.28 (7-8), p.447-455 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 7-8 |
container_start_page | 447 |
container_title | Gene therapy |
container_volume | 28 |
creator | Gilkes, Janine A. Judkins, Benjamin L. Herrera, Brontie N. Mandel, Ronald J. Boye, Sanford L. Boye, Shannon E. Srivastava, Arun Heldermon, Coy D. |
description | Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases. |
doi_str_mv | 10.1038/s41434-020-00206-w |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672611789</galeid><sourcerecordid>A672611789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</originalsourceid><addsrcrecordid>eNp9kl1rFDEYhQdR7Lb6B7yQgCD1Ymq-JpO5KazFj4GK4qq3IZO8s5sym6yTGWv_vZlubTsiEkhI8pyT5M3JsmcEnxDM5OvICWc8xxTnOHUiv3yQLQgvRV5wQR9mC1yJKi8JlQfZYYwXGGNeSvo4O2CMck7KapF1KzdAHndgXOsM2gY7jXpwwUc0BLRcfpfI6F10Fl056GxE4DfaG7Co6bXzaOi1j3Y0kwRN8w0gD8HrQXfo4-cVquv6TTIeIzzJHrW6i_D0ZjzKvr17-_XsQ37-6X19tjzPjcBiyFtLGWFYUCY11qQqG8MBW1HyRrOGC0uFKLCltpKWt9xUhaVFKUvaGm5MZdhRdrr33Y3NFqwBny7ZqV3vtrq_UkE7Nd_xbqPW4aeShFdcFsng-MagDz9GiIPaumig63R62RgV5aLgTJKiSuiLv9CLMPY-PU_RQlDBhaD4jlrrDpTzbUjnmslULUVJBSGlnLxO_kGlZmHrTPDQurQ-E7yaCRIzwK9hrccYVb36Mmdf3mM3oLthE0M3Xn_1HKR70PQhxh7a28IRrKbgqX3wVMqcug6eukyi5_dLfiv5k7QEsD0Q05ZfQ39Xp__Y_gbr9eEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562646620</pqid></control><display><type>article</type><title>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gilkes, Janine A. ; Judkins, Benjamin L. ; Herrera, Brontie N. ; Mandel, Ronald J. ; Boye, Sanford L. ; Boye, Shannon E. ; Srivastava, Arun ; Heldermon, Coy D.</creator><creatorcontrib>Gilkes, Janine A. ; Judkins, Benjamin L. ; Herrera, Brontie N. ; Mandel, Ronald J. ; Boye, Sanford L. ; Boye, Shannon E. ; Srivastava, Arun ; Heldermon, Coy D.</creatorcontrib><description>Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.</description><identifier>ISSN: 0969-7128</identifier><identifier>ISSN: 1476-5462</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-020-00206-w</identifier><identifier>PMID: 33244179</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42 ; 42/34 ; 42/44 ; 631/208/2489/201 ; 64/60 ; 692/699/317 ; 692/699/375 ; 82/51 ; Animals ; Biodistribution ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Brain ; Brain diseases ; Capsid ; Capsids ; Care and treatment ; Cell Biology ; Central nervous system ; Dependovirus - genetics ; Dependoviruses ; Gene Expression ; Gene Therapy ; Genetic aspects ; Genetic vectors ; Genetic Vectors - genetics ; Human Genetics ; Infants (Newborn) ; Methods ; Mice ; Mucopolysaccharidosis ; Mucopolysaccharidosis III - genetics ; Mucopolysaccharidosis III - therapy ; Mutants ; N-Acetylglucosaminidase ; Nanotechnology ; Neonates ; Neurodegeneration ; Phenylalanine ; Retina ; Thalamus ; Threonine ; Tissue Distribution ; Transduction ; Transduction, Genetic ; Tyrosine ; Valine ; Ventral tegmentum</subject><ispartof>Gene therapy, 2021-08, Vol.28 (7-8), p.447-455</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. corrected publication 2023</rights><rights>2020. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</citedby><cites>FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</cites><orcidid>0000-0002-2148-2868 ; 0000-0002-1119-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33244179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilkes, Janine A.</creatorcontrib><creatorcontrib>Judkins, Benjamin L.</creatorcontrib><creatorcontrib>Herrera, Brontie N.</creatorcontrib><creatorcontrib>Mandel, Ronald J.</creatorcontrib><creatorcontrib>Boye, Sanford L.</creatorcontrib><creatorcontrib>Boye, Shannon E.</creatorcontrib><creatorcontrib>Srivastava, Arun</creatorcontrib><creatorcontrib>Heldermon, Coy D.</creatorcontrib><title>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.</description><subject>42</subject><subject>42/34</subject><subject>42/44</subject><subject>631/208/2489/201</subject><subject>64/60</subject><subject>692/699/317</subject><subject>692/699/375</subject><subject>82/51</subject><subject>Animals</subject><subject>Biodistribution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Brain</subject><subject>Brain diseases</subject><subject>Capsid</subject><subject>Capsids</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Dependovirus - genetics</subject><subject>Dependoviruses</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Genetic vectors</subject><subject>Genetic Vectors - genetics</subject><subject>Human Genetics</subject><subject>Infants (Newborn)</subject><subject>Methods</subject><subject>Mice</subject><subject>Mucopolysaccharidosis</subject><subject>Mucopolysaccharidosis III - genetics</subject><subject>Mucopolysaccharidosis III - therapy</subject><subject>Mutants</subject><subject>N-Acetylglucosaminidase</subject><subject>Nanotechnology</subject><subject>Neonates</subject><subject>Neurodegeneration</subject><subject>Phenylalanine</subject><subject>Retina</subject><subject>Thalamus</subject><subject>Threonine</subject><subject>Tissue Distribution</subject><subject>Transduction</subject><subject>Transduction, Genetic</subject><subject>Tyrosine</subject><subject>Valine</subject><subject>Ventral tegmentum</subject><issn>0969-7128</issn><issn>1476-5462</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl1rFDEYhQdR7Lb6B7yQgCD1Ymq-JpO5KazFj4GK4qq3IZO8s5sym6yTGWv_vZlubTsiEkhI8pyT5M3JsmcEnxDM5OvICWc8xxTnOHUiv3yQLQgvRV5wQR9mC1yJKi8JlQfZYYwXGGNeSvo4O2CMck7KapF1KzdAHndgXOsM2gY7jXpwwUc0BLRcfpfI6F10Fl056GxE4DfaG7Co6bXzaOi1j3Y0kwRN8w0gD8HrQXfo4-cVquv6TTIeIzzJHrW6i_D0ZjzKvr17-_XsQ37-6X19tjzPjcBiyFtLGWFYUCY11qQqG8MBW1HyRrOGC0uFKLCltpKWt9xUhaVFKUvaGm5MZdhRdrr33Y3NFqwBny7ZqV3vtrq_UkE7Nd_xbqPW4aeShFdcFsng-MagDz9GiIPaumig63R62RgV5aLgTJKiSuiLv9CLMPY-PU_RQlDBhaD4jlrrDpTzbUjnmslULUVJBSGlnLxO_kGlZmHrTPDQurQ-E7yaCRIzwK9hrccYVb36Mmdf3mM3oLthE0M3Xn_1HKR70PQhxh7a28IRrKbgqX3wVMqcug6eukyi5_dLfiv5k7QEsD0Q05ZfQ39Xp__Y_gbr9eEw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gilkes, Janine A.</creator><creator>Judkins, Benjamin L.</creator><creator>Herrera, Brontie N.</creator><creator>Mandel, Ronald J.</creator><creator>Boye, Sanford L.</creator><creator>Boye, Shannon E.</creator><creator>Srivastava, Arun</creator><creator>Heldermon, Coy D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2148-2868</orcidid><orcidid>https://orcid.org/0000-0002-1119-116X</orcidid></search><sort><creationdate>20210801</creationdate><title>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</title><author>Gilkes, Janine A. ; Judkins, Benjamin L. ; Herrera, Brontie N. ; Mandel, Ronald J. ; Boye, Sanford L. ; Boye, Shannon E. ; Srivastava, Arun ; Heldermon, Coy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>42</topic><topic>42/34</topic><topic>42/44</topic><topic>631/208/2489/201</topic><topic>64/60</topic><topic>692/699/317</topic><topic>692/699/375</topic><topic>82/51</topic><topic>Animals</topic><topic>Biodistribution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Brain</topic><topic>Brain diseases</topic><topic>Capsid</topic><topic>Capsids</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Dependovirus - genetics</topic><topic>Dependoviruses</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Genetic vectors</topic><topic>Genetic Vectors - genetics</topic><topic>Human Genetics</topic><topic>Infants (Newborn)</topic><topic>Methods</topic><topic>Mice</topic><topic>Mucopolysaccharidosis</topic><topic>Mucopolysaccharidosis III - genetics</topic><topic>Mucopolysaccharidosis III - therapy</topic><topic>Mutants</topic><topic>N-Acetylglucosaminidase</topic><topic>Nanotechnology</topic><topic>Neonates</topic><topic>Neurodegeneration</topic><topic>Phenylalanine</topic><topic>Retina</topic><topic>Thalamus</topic><topic>Threonine</topic><topic>Tissue Distribution</topic><topic>Transduction</topic><topic>Transduction, Genetic</topic><topic>Tyrosine</topic><topic>Valine</topic><topic>Ventral tegmentum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilkes, Janine A.</creatorcontrib><creatorcontrib>Judkins, Benjamin L.</creatorcontrib><creatorcontrib>Herrera, Brontie N.</creatorcontrib><creatorcontrib>Mandel, Ronald J.</creatorcontrib><creatorcontrib>Boye, Sanford L.</creatorcontrib><creatorcontrib>Boye, Shannon E.</creatorcontrib><creatorcontrib>Srivastava, Arun</creatorcontrib><creatorcontrib>Heldermon, Coy D.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilkes, Janine A.</au><au>Judkins, Benjamin L.</au><au>Herrera, Brontie N.</au><au>Mandel, Ronald J.</au><au>Boye, Sanford L.</au><au>Boye, Shannon E.</au><au>Srivastava, Arun</au><au>Heldermon, Coy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>28</volume><issue>7-8</issue><spage>447</spage><epage>455</epage><pages>447-455</pages><issn>0969-7128</issn><issn>1476-5462</issn><eissn>1476-5462</eissn><abstract>Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33244179</pmid><doi>10.1038/s41434-020-00206-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2148-2868</orcidid><orcidid>https://orcid.org/0000-0002-1119-116X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2021-08, Vol.28 (7-8), p.447-455 |
issn | 0969-7128 1476-5462 1476-5462 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149485 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 42 42/34 42/44 631/208/2489/201 64/60 692/699/317 692/699/375 82/51 Animals Biodistribution Biomedical and Life Sciences Biomedicine Blood-brain barrier Brain Brain diseases Capsid Capsids Care and treatment Cell Biology Central nervous system Dependovirus - genetics Dependoviruses Gene Expression Gene Therapy Genetic aspects Genetic vectors Genetic Vectors - genetics Human Genetics Infants (Newborn) Methods Mice Mucopolysaccharidosis Mucopolysaccharidosis III - genetics Mucopolysaccharidosis III - therapy Mutants N-Acetylglucosaminidase Nanotechnology Neonates Neurodegeneration Phenylalanine Retina Thalamus Threonine Tissue Distribution Transduction Transduction, Genetic Tyrosine Valine Ventral tegmentum |
title | Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20modifications%20to%20AAV8%20capsid%20yields%20enhanced%20brain%20transduction%20in%20the%20neonatal%20MPS%20IIIB%20mouse&rft.jtitle=Gene%20therapy&rft.au=Gilkes,%20Janine%20A.&rft.date=2021-08-01&rft.volume=28&rft.issue=7-8&rft.spage=447&rft.epage=455&rft.pages=447-455&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-020-00206-w&rft_dat=%3Cgale_pubme%3EA672611789%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562646620&rft_id=info:pmid/33244179&rft_galeid=A672611789&rfr_iscdi=true |