Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2021-08, Vol.28 (7-8), p.447-455
Hauptverfasser: Gilkes, Janine A., Judkins, Benjamin L., Herrera, Brontie N., Mandel, Ronald J., Boye, Sanford L., Boye, Shannon E., Srivastava, Arun, Heldermon, Coy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 7-8
container_start_page 447
container_title Gene therapy
container_volume 28
creator Gilkes, Janine A.
Judkins, Benjamin L.
Herrera, Brontie N.
Mandel, Ronald J.
Boye, Sanford L.
Boye, Shannon E.
Srivastava, Arun
Heldermon, Coy D.
description Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.
doi_str_mv 10.1038/s41434-020-00206-w
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672611789</galeid><sourcerecordid>A672611789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</originalsourceid><addsrcrecordid>eNp9kl1rFDEYhQdR7Lb6B7yQgCD1Ymq-JpO5KazFj4GK4qq3IZO8s5sym6yTGWv_vZlubTsiEkhI8pyT5M3JsmcEnxDM5OvICWc8xxTnOHUiv3yQLQgvRV5wQR9mC1yJKi8JlQfZYYwXGGNeSvo4O2CMck7KapF1KzdAHndgXOsM2gY7jXpwwUc0BLRcfpfI6F10Fl056GxE4DfaG7Co6bXzaOi1j3Y0kwRN8w0gD8HrQXfo4-cVquv6TTIeIzzJHrW6i_D0ZjzKvr17-_XsQ37-6X19tjzPjcBiyFtLGWFYUCY11qQqG8MBW1HyRrOGC0uFKLCltpKWt9xUhaVFKUvaGm5MZdhRdrr33Y3NFqwBny7ZqV3vtrq_UkE7Nd_xbqPW4aeShFdcFsng-MagDz9GiIPaumig63R62RgV5aLgTJKiSuiLv9CLMPY-PU_RQlDBhaD4jlrrDpTzbUjnmslULUVJBSGlnLxO_kGlZmHrTPDQurQ-E7yaCRIzwK9hrccYVb36Mmdf3mM3oLthE0M3Xn_1HKR70PQhxh7a28IRrKbgqX3wVMqcug6eukyi5_dLfiv5k7QEsD0Q05ZfQ39Xp__Y_gbr9eEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562646620</pqid></control><display><type>article</type><title>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gilkes, Janine A. ; Judkins, Benjamin L. ; Herrera, Brontie N. ; Mandel, Ronald J. ; Boye, Sanford L. ; Boye, Shannon E. ; Srivastava, Arun ; Heldermon, Coy D.</creator><creatorcontrib>Gilkes, Janine A. ; Judkins, Benjamin L. ; Herrera, Brontie N. ; Mandel, Ronald J. ; Boye, Sanford L. ; Boye, Shannon E. ; Srivastava, Arun ; Heldermon, Coy D.</creatorcontrib><description>Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.</description><identifier>ISSN: 0969-7128</identifier><identifier>ISSN: 1476-5462</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-020-00206-w</identifier><identifier>PMID: 33244179</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42 ; 42/34 ; 42/44 ; 631/208/2489/201 ; 64/60 ; 692/699/317 ; 692/699/375 ; 82/51 ; Animals ; Biodistribution ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Brain ; Brain diseases ; Capsid ; Capsids ; Care and treatment ; Cell Biology ; Central nervous system ; Dependovirus - genetics ; Dependoviruses ; Gene Expression ; Gene Therapy ; Genetic aspects ; Genetic vectors ; Genetic Vectors - genetics ; Human Genetics ; Infants (Newborn) ; Methods ; Mice ; Mucopolysaccharidosis ; Mucopolysaccharidosis III - genetics ; Mucopolysaccharidosis III - therapy ; Mutants ; N-Acetylglucosaminidase ; Nanotechnology ; Neonates ; Neurodegeneration ; Phenylalanine ; Retina ; Thalamus ; Threonine ; Tissue Distribution ; Transduction ; Transduction, Genetic ; Tyrosine ; Valine ; Ventral tegmentum</subject><ispartof>Gene therapy, 2021-08, Vol.28 (7-8), p.447-455</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. corrected publication 2023</rights><rights>2020. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</citedby><cites>FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</cites><orcidid>0000-0002-2148-2868 ; 0000-0002-1119-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33244179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilkes, Janine A.</creatorcontrib><creatorcontrib>Judkins, Benjamin L.</creatorcontrib><creatorcontrib>Herrera, Brontie N.</creatorcontrib><creatorcontrib>Mandel, Ronald J.</creatorcontrib><creatorcontrib>Boye, Sanford L.</creatorcontrib><creatorcontrib>Boye, Shannon E.</creatorcontrib><creatorcontrib>Srivastava, Arun</creatorcontrib><creatorcontrib>Heldermon, Coy D.</creatorcontrib><title>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.</description><subject>42</subject><subject>42/34</subject><subject>42/44</subject><subject>631/208/2489/201</subject><subject>64/60</subject><subject>692/699/317</subject><subject>692/699/375</subject><subject>82/51</subject><subject>Animals</subject><subject>Biodistribution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Brain</subject><subject>Brain diseases</subject><subject>Capsid</subject><subject>Capsids</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Dependovirus - genetics</subject><subject>Dependoviruses</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Genetic vectors</subject><subject>Genetic Vectors - genetics</subject><subject>Human Genetics</subject><subject>Infants (Newborn)</subject><subject>Methods</subject><subject>Mice</subject><subject>Mucopolysaccharidosis</subject><subject>Mucopolysaccharidosis III - genetics</subject><subject>Mucopolysaccharidosis III - therapy</subject><subject>Mutants</subject><subject>N-Acetylglucosaminidase</subject><subject>Nanotechnology</subject><subject>Neonates</subject><subject>Neurodegeneration</subject><subject>Phenylalanine</subject><subject>Retina</subject><subject>Thalamus</subject><subject>Threonine</subject><subject>Tissue Distribution</subject><subject>Transduction</subject><subject>Transduction, Genetic</subject><subject>Tyrosine</subject><subject>Valine</subject><subject>Ventral tegmentum</subject><issn>0969-7128</issn><issn>1476-5462</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl1rFDEYhQdR7Lb6B7yQgCD1Ymq-JpO5KazFj4GK4qq3IZO8s5sym6yTGWv_vZlubTsiEkhI8pyT5M3JsmcEnxDM5OvICWc8xxTnOHUiv3yQLQgvRV5wQR9mC1yJKi8JlQfZYYwXGGNeSvo4O2CMck7KapF1KzdAHndgXOsM2gY7jXpwwUc0BLRcfpfI6F10Fl056GxE4DfaG7Co6bXzaOi1j3Y0kwRN8w0gD8HrQXfo4-cVquv6TTIeIzzJHrW6i_D0ZjzKvr17-_XsQ37-6X19tjzPjcBiyFtLGWFYUCY11qQqG8MBW1HyRrOGC0uFKLCltpKWt9xUhaVFKUvaGm5MZdhRdrr33Y3NFqwBny7ZqV3vtrq_UkE7Nd_xbqPW4aeShFdcFsng-MagDz9GiIPaumig63R62RgV5aLgTJKiSuiLv9CLMPY-PU_RQlDBhaD4jlrrDpTzbUjnmslULUVJBSGlnLxO_kGlZmHrTPDQurQ-E7yaCRIzwK9hrccYVb36Mmdf3mM3oLthE0M3Xn_1HKR70PQhxh7a28IRrKbgqX3wVMqcug6eukyi5_dLfiv5k7QEsD0Q05ZfQ39Xp__Y_gbr9eEw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gilkes, Janine A.</creator><creator>Judkins, Benjamin L.</creator><creator>Herrera, Brontie N.</creator><creator>Mandel, Ronald J.</creator><creator>Boye, Sanford L.</creator><creator>Boye, Shannon E.</creator><creator>Srivastava, Arun</creator><creator>Heldermon, Coy D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2148-2868</orcidid><orcidid>https://orcid.org/0000-0002-1119-116X</orcidid></search><sort><creationdate>20210801</creationdate><title>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</title><author>Gilkes, Janine A. ; Judkins, Benjamin L. ; Herrera, Brontie N. ; Mandel, Ronald J. ; Boye, Sanford L. ; Boye, Shannon E. ; Srivastava, Arun ; Heldermon, Coy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-fd231306238a0a197bc4e0d674ba3b46d26650d2d98d4f4c95d257872fc4cc9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>42</topic><topic>42/34</topic><topic>42/44</topic><topic>631/208/2489/201</topic><topic>64/60</topic><topic>692/699/317</topic><topic>692/699/375</topic><topic>82/51</topic><topic>Animals</topic><topic>Biodistribution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Brain</topic><topic>Brain diseases</topic><topic>Capsid</topic><topic>Capsids</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Dependovirus - genetics</topic><topic>Dependoviruses</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Genetic vectors</topic><topic>Genetic Vectors - genetics</topic><topic>Human Genetics</topic><topic>Infants (Newborn)</topic><topic>Methods</topic><topic>Mice</topic><topic>Mucopolysaccharidosis</topic><topic>Mucopolysaccharidosis III - genetics</topic><topic>Mucopolysaccharidosis III - therapy</topic><topic>Mutants</topic><topic>N-Acetylglucosaminidase</topic><topic>Nanotechnology</topic><topic>Neonates</topic><topic>Neurodegeneration</topic><topic>Phenylalanine</topic><topic>Retina</topic><topic>Thalamus</topic><topic>Threonine</topic><topic>Tissue Distribution</topic><topic>Transduction</topic><topic>Transduction, Genetic</topic><topic>Tyrosine</topic><topic>Valine</topic><topic>Ventral tegmentum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilkes, Janine A.</creatorcontrib><creatorcontrib>Judkins, Benjamin L.</creatorcontrib><creatorcontrib>Herrera, Brontie N.</creatorcontrib><creatorcontrib>Mandel, Ronald J.</creatorcontrib><creatorcontrib>Boye, Sanford L.</creatorcontrib><creatorcontrib>Boye, Shannon E.</creatorcontrib><creatorcontrib>Srivastava, Arun</creatorcontrib><creatorcontrib>Heldermon, Coy D.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilkes, Janine A.</au><au>Judkins, Benjamin L.</au><au>Herrera, Brontie N.</au><au>Mandel, Ronald J.</au><au>Boye, Sanford L.</au><au>Boye, Shannon E.</au><au>Srivastava, Arun</au><au>Heldermon, Coy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>28</volume><issue>7-8</issue><spage>447</spage><epage>455</epage><pages>447-455</pages><issn>0969-7128</issn><issn>1476-5462</issn><eissn>1476-5462</eissn><abstract>Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood–brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y447 + 733F) and a triple-mutant (Y447 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y–F + T–V) compared to AAV8 (double Y–F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y–F + T–V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33244179</pmid><doi>10.1038/s41434-020-00206-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2148-2868</orcidid><orcidid>https://orcid.org/0000-0002-1119-116X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2021-08, Vol.28 (7-8), p.447-455
issn 0969-7128
1476-5462
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149485
source MEDLINE; Alma/SFX Local Collection
subjects 42
42/34
42/44
631/208/2489/201
64/60
692/699/317
692/699/375
82/51
Animals
Biodistribution
Biomedical and Life Sciences
Biomedicine
Blood-brain barrier
Brain
Brain diseases
Capsid
Capsids
Care and treatment
Cell Biology
Central nervous system
Dependovirus - genetics
Dependoviruses
Gene Expression
Gene Therapy
Genetic aspects
Genetic vectors
Genetic Vectors - genetics
Human Genetics
Infants (Newborn)
Methods
Mice
Mucopolysaccharidosis
Mucopolysaccharidosis III - genetics
Mucopolysaccharidosis III - therapy
Mutants
N-Acetylglucosaminidase
Nanotechnology
Neonates
Neurodegeneration
Phenylalanine
Retina
Thalamus
Threonine
Tissue Distribution
Transduction
Transduction, Genetic
Tyrosine
Valine
Ventral tegmentum
title Site-specific modifications to AAV8 capsid yields enhanced brain transduction in the neonatal MPS IIIB mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20modifications%20to%20AAV8%20capsid%20yields%20enhanced%20brain%20transduction%20in%20the%20neonatal%20MPS%20IIIB%20mouse&rft.jtitle=Gene%20therapy&rft.au=Gilkes,%20Janine%20A.&rft.date=2021-08-01&rft.volume=28&rft.issue=7-8&rft.spage=447&rft.epage=455&rft.pages=447-455&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-020-00206-w&rft_dat=%3Cgale_pubme%3EA672611789%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562646620&rft_id=info:pmid/33244179&rft_galeid=A672611789&rfr_iscdi=true