Myelopoiesis during Solid Cancers and Strategies for Immunotherapy
Our understanding of the relationship between the immune system and cancers has undergone significant discovery recently. Immunotherapy with T cell therapies and checkpoint blockade has meaningfully changed the oncology landscape. While remarkable clinical advances in adaptive immunity are occurring...
Gespeichert in:
Veröffentlicht in: | Cells (Basel, Switzerland) Switzerland), 2021-04, Vol.10 (5), p.968, Article 968 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our understanding of the relationship between the immune system and cancers has undergone significant discovery recently. Immunotherapy with T cell therapies and checkpoint blockade has meaningfully changed the oncology landscape. While remarkable clinical advances in adaptive immunity are occurring, modulation of innate immunity has proven more difficult. The myeloid compartment, including macrophages, neutrophils, and dendritic cells, has a significant impact on the persistence or elimination of tumors. Myeloid cells, specifically in the tumor microenvironment, have direct contact with tumor tissue and coordinate with tumor-reactive T cells to either stimulate or antagonize cancer immunity. However, the myeloid compartment comprises a broad array of cells in various stages of development. In addition, hematopoietic stem and progenitor cells at various stages of myelopoiesis in distant sites undergo significant modulation by tumors. Understanding how tumors exert their influence on myeloid progenitors is critical to making clinically meaningful improvements in these pathways. Therefore, this review will cover recent developments in our understanding of how solid tumors modulate myelopoiesis to promote the formation of pro-tumor immature myeloid cells. Then, it will cover some of the potential avenues for capitalizing on these mechanisms to generate antitumor immunity. |
---|---|
ISSN: | 2073-4409 2073-4409 |
DOI: | 10.3390/cells10050968 |